【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

【答案】A

【解析】

根據(jù)已知條件求得圓錐母線與底面圓半徑r的關(guān)系,從而得到圓錐的高與r關(guān)系,計算圓錐體積,由截面圖得到外接球的半徑Rr間的關(guān)系,計算球的體積,作比即可得到答案.

設(shè)圓錐底面圓的半徑為r,圓錐母線長為l,則側(cè)面積為

側(cè)面積與底面積的比為,則母線l=2r,圓錐的高為h=,

則圓錐的體積為,

設(shè)外接球的球心為O,半徑為R,截面圖如圖,則OB=OS=R,OD=h-R=,BD=r,

在直角三角形BOD中,由勾股定理得,,

展開整理得R=所以外接球的體積為,

故所求體積比為

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司準(zhǔn)備在2020年年初將兩千萬投資東營經(jīng)濟開發(fā)區(qū)的示范區(qū)新型物流,商旅文化兩個項目中的一個之中.

項目一:新型物流倉是為企業(yè)提供倉儲、運輸、配送、貨運信息等綜合物流服務(wù)的平臺.現(xiàn)準(zhǔn)備投資建設(shè)10個新型物流倉,每個物流倉投資0.2千萬元,假設(shè)每個物流倉盈利是相互獨立的,據(jù)市場調(diào)研,到2022年底每個物流倉盈利的概率為,若盈利則盈利為投資額的40%,否則盈利額為0

項目二:購物娛樂廣場是一處融商業(yè)和娛樂于一體的現(xiàn)代化綜合服務(wù)廣場.據(jù)市場調(diào)研,投資到該項目上,到2022年底可能盈利投資額的50%,也可能虧損投資額的30%,且這兩種情況發(fā)生的概率分別為

1)若投資項目一,記為盈利的物流倉的個數(shù),求(用表示);

2)若投資項目二,記投資項目二的盈利為千萬元,求(用表示);

3)在(1)(2)兩個條件下,針對以上兩個投資項目,請你為投資公司選擇一個項目,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)hx)=x2ex,fx)=hx)﹣aexaR).

(Ⅰ)求函數(shù)hx)的單調(diào)區(qū)間;

(Ⅱ)若x1,x2∈(12),且x1x2,使得fx1)=fx2)成立,求a的取值范圍;

(Ⅲ)若函數(shù)fx)有兩個不同的極值點x1x2,求證:fx1fx2)<4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)已知函數(shù)在點處的切線與直線垂直,求的值;

(Ⅱ)若函數(shù)上無零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,.估計該校學(xué)生每周平均體育運動時間超過6個小時的概率.

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線與曲線公共點的極坐標(biāo);

(2)設(shè)過點的直線交曲線,兩點,且的中點為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x) = -ax(a > 0).

(1) 當(dāng) a = 1 時,求證:對于任意 x > 0,都有 f(x) > 0 成立;

(2) 若函數(shù) y = f(x) 恰好在 x = x1 和 x = x2 兩處取得極值,求證:< ln a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求fx)的最小正周期;

(Ⅱ)若直線x=π為函數(shù)fx+a)圖象的一條對稱軸,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某種螺帽是由一個半徑為2的半球體挖去一個正三棱錐構(gòu)成的幾何體,該正三棱錐的底面三角形內(nèi)接于半球底面大圓,頂點在半球面上,則被挖去的正三棱錐體積為_______

查看答案和解析>>

同步練習(xí)冊答案