【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線 上的點(diǎn)到點(diǎn)的距離的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)將點(diǎn)及曲線化為普通方程,將直線設(shè)為點(diǎn)斜式,利用圓心到直線的距離等于半徑得的值,在利用化為極坐標(biāo)方程;(2)圓外的點(diǎn)到圓上距離的最大值為圓心到直線的距離加上半徑,最小值為圓心到直線的距離減去半徑得解.

試題解析:(1)由題意得點(diǎn)的直角坐標(biāo)為,曲線的一般方程為,.

設(shè)直線的方程為,即

直線且與曲線相切,,

,解得,

直線的極坐標(biāo)方程為

(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,點(diǎn)的直角坐標(biāo)為,.

則點(diǎn)到圓心的距離為,

曲線上的點(diǎn)到點(diǎn)的距離的最小值為,最大值為,

曲線上的點(diǎn)到點(diǎn)的距離的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1的單調(diào)區(qū)間和極值;

2上的最小值

3設(shè),若對恒成立求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形,側(cè)面底面,,,.

1證明:

2設(shè)與平面所成的角為,求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球個.若從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是

(1)求的值;

(2)從袋子中不放回地隨機(jī)抽取2個小球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為

i)記為事件,求事件的概率;

ii)在區(qū)間內(nèi)任取2個實數(shù),求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓外的有一點(diǎn),過點(diǎn)作直線.

(1)當(dāng)直線過圓心時,求直線的方程;

(2)當(dāng)直線與圓相切時,求直線的方程;

(3)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:,其中:,且為常數(shù).

(1)判斷曲線的形狀,并說明理由;

(2)設(shè)曲線分別與軸,軸交于點(diǎn)(不同于坐標(biāo)原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;

(3)設(shè)直線曲線交于不同的兩點(diǎn),為坐標(biāo)原點(diǎn)),求曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產(chǎn)一個衛(wèi)兵需5分鐘,生產(chǎn)一個騎兵需7分鐘,生產(chǎn)一個傘兵需4分鐘,已知總生產(chǎn)時間不超過10小時,若生產(chǎn)一個衛(wèi)兵可獲利潤5元,生產(chǎn)一個騎兵可獲利潤6元,生產(chǎn)一個傘兵可獲利潤3元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為大于零的常數(shù)

1當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2求函數(shù)在區(qū)間上的最小值;

3求證:對于任意的時,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案