經(jīng)過兩直線x+3y-10=0和3x-y=0的交點,且和原點相距為1的直線的條數(shù)為(  )
A、0B、1C、2D、3
考點:點到直線的距離公式,兩條直線的交點坐標
專題:直線與圓
分析:由方程組
x+3y-10=0
3x-y=0
,解得兩條直線的交點為A(1,3),當直線的斜率存在時,設所求直線的方程為:y-3=k(x-1),由點到直線的距離公式,求出直線方程為:4x-3y+5=0.當直線的斜率不存在時,直線的方程為x=1也符合題意,故滿足條件的直線有2條.
解答: 解:由方程組
x+3y-10=0
3x-y=0
,
解得兩條直線的交點為A(1,3),
當直線的斜率存在時,設所求直線的方程為:y-3=k(x-1),
即kx-y+3-k=0
由點到直線的距離公式,得
|3-k|
k2+1
=1,
解得k=
4
3
,直線方程為:4x-3y+5=0.
當直線的斜率不存在時,直線的方程為x=1也符合題意,
故所求直線的方程為:4x-3y+5=0或x=1.
∴滿足條件的直線有2條.
故選:C.
點評:本題考查滿足條件的直線條數(shù)的求法,是中檔題,解題時要認真審題,注意點到直線的距離公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋一枚均勻硬幣,正反每面出現(xiàn)的概率都是
1
2
,反復這樣投擲,數(shù)列{an}定義如下:an=
1,第n次投擲出現(xiàn)正面
-1,第n次投擲出現(xiàn)反面
,若Sn=a1+a2+…+an(n∈N*),則事件“S2≠0,S8=2”的概率是( 。
A、
1
256
B、
7
32
C、
1
2
D、
13
128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},滿足a3+a8=6,則此數(shù)列的前10項的和S10=( 。
A、10B、20C、30D、60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當x>0時,f(x)=x2+
1
x
,則f(-1)=(  )
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

李明所在的高二(16)班有58名學生,學校要從該班抽出5人開座談會,若采用系統(tǒng)抽樣法,需先剔除3人,再將留下的55人平均分成5個組,每組各抽一人,則李明參加座談會的概率為(  )
A、
1
11
B、
1
58
C、
5
58
D、
1
55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
2
3
an,n∈N*,其前n項和為Sn,則( 。
A、Sn=2an-1
B、Sn=3an-2
C、Sn=4-3an
D、Sn=3-2an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校舉行中華漢字聽寫選拔賽,考生甲、乙進入考察.要求每位考生從6道備選題中一次性隨機抽取3題進行獨立聽寫.規(guī)定:至少正確完成其中2題的才可通過考察.已知6道備選題中考生甲有4題能正確完成,2題不能完成;考生乙每題正確完成的概率都是
2
3
,且每題正確完成與否互不影響.求:
(1)設考生甲、乙正確完成題數(shù)分別X,Y,分別求出隨機變量X,Y的分布列及期望;
(2)分析哪個考生通過考察的概率較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二某班50名學生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績大于等于14秒且小于16秒規(guī)定為良好,求該班在這次百米測試中成績?yōu)榱己玫娜藬?shù).
(2)請根據(jù)頻率分布直方圖,估計樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
(3)設m,n表示該班兩個學生的百米測試成績,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假定下述數(shù)據(jù)是甲、乙兩個供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計兩個供貨商的交貨情況,并問哪個供貨商交貨時間短一些,哪個供貨商交貨時間較具一致性與可靠性.

查看答案和解析>>

同步練習冊答案