【題目】自2016年1月1日起,我國全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個(gè)”“生二孩能休多久產(chǎn)假”等成為千千萬萬個(gè)家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26


(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇. ①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機(jī)變量ξ的分布及期望.

【答案】
(1)解:由表中信息可知,當(dāng)產(chǎn)假為14周時(shí)某家庭有生育意愿的概率為 ;

當(dāng)產(chǎn)假為16周時(shí)某家庭有生育意愿的概率為


(2)解:①設(shè)“兩種安排方案休假周數(shù)和不低于32周”為事件A,

由已知從5種不同安排方案中,隨機(jī)地抽取2種方案選 法共有 (種),

其和不低于32周的選法有14、18、15、17、15、18、16、17、16、18、17、18,共6種,

由古典概型概率計(jì)算公式得

② 由題知隨機(jī)變量ξ的可能取值為29,30,31,32,33,34,35.

,

因而ξ的分布列為

ξ

29

30

31

32

33

34

35

P

0.1

0.1

0.2

0.2

0.2

0.1

0.1

所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32


【解析】(1)由表中信息可知,利用等可能事件概率計(jì)算公式能求出當(dāng)產(chǎn)假為14周時(shí)某家庭有生育意愿的概率和當(dāng)產(chǎn)假為16周時(shí)某家庭有生育意愿的概率.(2)①設(shè)“兩種安排方案休假周數(shù)和不低于32周”為事件A,由已知從5種不同安排方案中,隨機(jī)地抽取2種方案選法共有10種,由此利用列舉法能求出其和不低于32周的概率.②由題知隨機(jī)變量ξ的可能取值為29,30,31,32,33,34,35.分別求出相應(yīng)的概率,由此能求出ξ的分布列和E(ξ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣x﹣lnx,a∈R.
(1)當(dāng) 時(shí),求函數(shù)f(x)的最小值;
(2)若﹣1≤a≤0,證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,﹣
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進(jìn)行統(tǒng)計(jì),y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計(jì)表如下:

x

1

2

3

4

5

y

50

60

70

80

100

經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

1)若從這5天隨機(jī)抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計(jì)該活動持續(xù)7天,共有多少名顧客參加抽獎?

參考公式及數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖后,記“輸出是好點(diǎn)”為事件A.

(1)若為區(qū)間內(nèi)的整數(shù)值隨機(jī)數(shù),為區(qū)間內(nèi)的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;

(2)若為區(qū)間內(nèi)的均勻隨機(jī)數(shù),為區(qū)間內(nèi)的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1,數(shù)列{bn},{cn}滿足bn=log3 ,cn= . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和為Tn , 若不等式Tn<m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實(shí)數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點(diǎn),并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ x2﹣ax(a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 ,sinA= . (Ⅰ)求sinC的值;
(II)設(shè)D為AC的中點(diǎn),若△ABC的面積為8 ,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案