精英家教網(wǎng)在平行六面體ABCD-A1B1C1D1,已知AB=AD=4,AA1=3,∠A1AB=∠A1AD=∠BAD=
π3
,
(1)求AC1的長(zhǎng);
(2)求平行六面體ABCD-A1B1C1D1的體積.
分析:(1)記A1在面ABCD內(nèi)的射影為O,O在∠BAD的平分線上,說(shuō)明∠BAD的平分線即菱形ABCD的對(duì)角線AC,求AC1的長(zhǎng)
(2)求出底面面積,求出高,即可求平行六面體ABCD-A1B1C1D1的體積.
解答:解:(1)記A1在面ABCD內(nèi)的射影為O,
∵∠A1AB=∠A1AD,∴O在∠BAD的平分線上,
又AB=AD,∴∠BAD的平分線即菱形ABCD的
對(duì)角線AC,故O在AC上;∵cos∠A1AB=cos∠A1AO×cos∠OAB
∴cos∠A1AO=
3
3
,∴sin∠A1AO=
6
3
,AO=
3

cos∠ACC1=-
3
3
;又AC=4
3
,在△ACC1中由余弦定理得AC1=9;
所以AC1=9;

(2)在△A1AO中,A1O=
6
,
VABCD-A1B1C1D1=4×4×
3
2
×
6
=24
2

 注:求AC1的長(zhǎng)還可以用向量:
.
AC1
=
.
AB
+
.
BC
+
.
CC1
,平方即可.
點(diǎn)評(píng):本題考查幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.解題關(guān)鍵在于,正確解三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,O為AC與BD的交點(diǎn),若
A1B1
=
a
,
A1D1
=
b
,
AA1
=
c
,則向量
B1O
等于( 。
精英家教網(wǎng)
A、
1
2
a
+
1
2
b
+
c
B、
1
2
a
-
1
2
b
+
c
C、-
1
2
a
+
1
2
b
+
c
D、-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點(diǎn).若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則下列向量中與
BM
相等的向量是( 。
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-A1B1C1D1中,向量
D1A
、
D1C
、
A1C1
是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平行六面體ABCD-A1B1C1D1中,AB=AD=AA1=1,且∠BAD=∠BAA1=∠DAA1=60°,求AC1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-A1B1C1D1中,
AC
=
a
,
BD
=
b
,
AC1
=
c
,試用
a
b
、
c
表示
BD1
=
b
+
c
-
a
b
+
c
-
a

查看答案和解析>>

同步練習(xí)冊(cè)答案