(14分)設(shè)上的兩點(diǎn),

已知,若且橢圓的離心率

短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).

     (Ⅰ)求橢圓的方程;

    (Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

解析:(Ⅰ)

橢圓的方程為       ……………………3分

(Ⅱ)由題意,設(shè)AB的方程為

 

由已知得:                                   

    ……7分

(Ⅲ) (1)當(dāng)直線AB斜率不存在時(shí),即,由……………………8分

在橢圓上,所以

所以三角形的面積為定值……………………9分

 

(2).當(dāng)直線AB斜率存在時(shí):設(shè)AB的方程為y=kx+b

                            ……………………10分

                  ………………………………………12分    

所以三角形的面積為定值.        ………………………………………14分 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012屆山東省曲阜師大附中高三9月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)設(shè)上的兩點(diǎn),已知向量,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)(0,c),(c為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三9月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)設(shè)上的兩點(diǎn),已知向量,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線過橢圓的焦點(diǎn)(0,c),(c為半焦距),求直線的斜率的值;

(Ⅲ)試問:的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)設(shè)上的兩點(diǎn),已知,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

設(shè)上的兩點(diǎn),已知,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).

  (Ⅰ)求橢圓的方程;

 (Ⅱ)試探究△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案