【題目】已知函數(shù)

(1)若,求函數(shù)的零點(diǎn);

(2)若恒成立,求的取值范圍;

(3)設(shè)函數(shù),解不等式.

【答案】(1)1;(2) (3)見解析

【解析】

1)解方程可得零點(diǎn);

2恒成立,可分離參數(shù)得,這樣只要求得上的最大值即可;

3)注意到的定義域,不等式等價(jià)于,這樣可根據(jù)0,1的大小關(guān)系分類討論.

(1)當(dāng)時(shí),

得,,∵,∴函數(shù)的零點(diǎn)是1

(2)恒成立,即恒成立,

分離參數(shù)得:,

,∴

從而有:.

(3)

,得,

因?yàn)楹瘮?shù)的定義域?yàn)?/span>,所以等價(jià)于

(1)當(dāng),即時(shí),恒成立,原不等式的解集是

(2)當(dāng),即時(shí),原不等式的解集是

(3)當(dāng),即時(shí),原不等式的解集是

(4)當(dāng),即時(shí),原不等式的解集是

綜上所述:當(dāng)時(shí),原不等式的解集是

當(dāng)時(shí),原不等式的解集是

當(dāng)時(shí),原不等式的解集是

當(dāng)時(shí),原不等式的解集是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)過點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)E作不經(jīng)過原點(diǎn)的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過定點(diǎn)F(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.

(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);

(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面 , , 分別為 的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為的學(xué)生成績(jī)樣本,得頻率分布表如下:

組號(hào)

分組

頻率

頻數(shù)

第一組

第二組

第三組

第四組

第五組

合計(jì)

1)寫出表中①、②位置的數(shù)據(jù);

2)估計(jì)成績(jī)不低于分的學(xué)生約占多少;

3)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形,E為的中點(diǎn),將沿翻折到的位置,平面,的中點(diǎn),則在翻折過程中,下列結(jié)論正確的是( )

A.恒有 平面

B.B與M兩點(diǎn)間距離恒為定值

C.三棱錐的體積的最大值為

D.存在某個(gè)位置,使得平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知是遞增數(shù)列,其前項(xiàng)和為,,且,

)求數(shù)列的通項(xiàng);

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請(qǐng)說明理由;

)設(shè),若對(duì)于任意的,不等式

恒成立,求正整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案