命題“對任意的x∈R,x3-x2+1≤0”的否定是
 
考點(diǎn):命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.
解答: 解:因?yàn)槿Q命題的否定是特稱命題,
所以命題“對任意的x∈R,x3-x2+1≤0”的否定是:存在x∈R,x3-x2+1>0.
故答案為:存在x∈R,x3-x2+1>0.
點(diǎn)評:本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是R上的偶函數(shù),當(dāng)x>0時,f(x)=2x+1,則f(-2)=( 。
A、-3B、3C、5D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若lg2=a,lg3=b,則log43=
 
.(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx+1(a,b∈R),f(lg(log3e))=2,則f(lg(ln3))=(  )
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a,b的等差中項(xiàng)為
1
2
,則求
1
a
+
4
b
的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形ABCD中,P、Q、R分別是AB、AD、CD的中點(diǎn),平面PQR交BC于點(diǎn)S.
求證:四邊形PQRS為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于正項(xiàng)數(shù)列{an},定義Gn=
a1+2a2+3a3+…+nan
n
為數(shù)列{an}的“勻稱”值.已知數(shù)列{an}的“勻稱”值為Gn=n+2,則該數(shù)列中的a10,等于( 。
A、2
3
B、
4
5
C、1
D、
21
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,an+1=3an(n∈N*).
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

同步練習(xí)冊答案