已知函數(shù)在 處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實(shí)根,求實(shí)數(shù)的值 ;
(3)數(shù)列滿足,,求的整數(shù)部分.
(1).(2) 或(3)的整數(shù)部分為. l4分
解析試題分析:(1), 1分
依題設(shè),有,即, 2分
解得 3分
. 4分
(2)方程,即,得, ………5分
記,
則. ……6分
令,得 ………7分
當(dāng)變化時(shí),、的變化情況如下表:
∴當(dāng)時(shí),F(xiàn)(x)取極小值 ;當(dāng)時(shí),F(xiàn)(x)取極大值…………8分
作出直線和函數(shù)的大致圖象,可知當(dāng)或時(shí),
它們有兩個不同的交點(diǎn),因此方程恰有兩個不同的實(shí)根, ………9分
(3) ,得,又。
,
. 10分
由,得, 11分
,即 12分
又 13分
即,故的整數(shù)部分為. l4分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時(shí)要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識,注重?cái)?shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運(yùn)用
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a為實(shí)數(shù),函數(shù)f(x)=(x2+1)(x+a),若f′(-1)=0,求函數(shù)y=f(x)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/90/1/1ja1l4.png" style="vertical-align:middle;" />,當(dāng)時(shí),,且對于任意的,恒有成立.
(1)求;
(2)證明:函數(shù)在上單調(diào)遞增;
(3)當(dāng)時(shí),
①解不等式;
②求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)與的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)如果函數(shù)在上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不相等的實(shí)數(shù)根?若存在,請求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com