精英家教網(wǎng)三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3
,AB=
2
,AC=2,A1C1=1,
BD
DC
=
1
2

(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求AA1與平面BCC1B1所成角的正弦值.
分析:(Ⅰ)如圖,建立空間直角坐標系,求得相關點的坐標,再求得相關向量的坐標,再求數(shù)量積得到線線垂直,進而推知面面垂直,
(Ⅱ)先求得平面BCC1B1的一個法向量,再利用向量法求線面角公式求解.
解答:精英家教網(wǎng)解:(Ⅰ)如圖,建立空間直角坐標系,則
A(0,0,0),B(
2
,0,0)
,C(0,2,0),A1(0,0,
3
)
,C1(0,1,
3
)
,
∵BD:DC=1:2,
BD
=
1
3
BC

∴D點坐標為(
2
2
3
,
2
3
,0)

AD
=(
2
2
3
,
2
3
,0)
,
BC
=(-
2
,2,0),
AA1
=(0,0,
3
)
CC1
=(0,-1,
3
)

BC
AA1
=0
BC
AD
=0
,
∴BC⊥AA1,BC⊥AD,又A1A∩AD=A,
∴BC⊥平面A1AD,又BC?平面BCC1B1,
∴平面A1AD⊥平面BCC1B1
(Ⅱ)設平面BCC1B1的法向量為
n
=(x,y,z),則
n
BC
=0
,
n
CC1
=0即
-
2
x+2y=0
-y+
3
z=0

y=
6
,
解得=(2
3
6
,
2
)
cos<
AA1
,>=
3
×
2
3
12+6+2
=
10
10

因此:AA1與平面BCC1B1所成角的正弦值為
10
10
點評:本題主要是用向量的方法來證明線線垂直,體現(xiàn)垂直關系的轉(zhuǎn)化,同時反映出用向量法求角的優(yōu)越性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:陜西 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3
AB=
2
,AC=2,A1C1=1,
BD
DC
=
1
2

(Ⅰ)證明:平面A1AD⊥平面BCC1B1
(Ⅱ)求二面角A-CC1-B的大�。�
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2012年新人教A版高考數(shù)學一輪復習單元質(zhì)量評估07(第七章)(理科)(解析版) 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,,AC=2,A1C1=1,
(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大�。�

查看答案和解析>>

科目:高中數(shù)學 來源:2008年陜西省高考數(shù)學試卷(文科)(解析版) 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,,AC=2,A1C1=1,
(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大�。�

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�