(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,不完全相同”的概率.
(1);(2).

試題分析:共有9張卡片,有放回地取3次,則每次都有9種選擇,將所有可能結果一一列舉出來,共有27種不同的結果.(1)滿足的結果包括,共3種,故所求概率為;(2)根據(jù)正難則反的原則,我們可以先考慮其對立事件,即完全相同的結果,它包括,共3種,故所求概率為.
試題解析:(1)由題意得,的所有可能為:
,
,
,共27種.
設“抽取的卡片上的數(shù)字滿足”為事件A,則事件A包括,共3種,
所以.
因此“抽取的卡片上的數(shù)字滿足”的概率為.
(2)設“抽取的卡片上的數(shù)字不完全相同”為事件B,
則事件包括,共3種,
所以.
因此“抽取的卡片上的數(shù)字不完全相同”的概率為.
【考點定位】古典概型及隨機事件的概率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中裝有編號為的球個,編號為的球個,這些球的大小完全一樣。
(1)從中任意取出四個,求剩下的四個球都是號球的概率;
(2)從中任意取出三個,記為這三個球的編號之和,求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

每年的三月十二日,是中國的植樹節(jié),林管部門在植樹前,為保證樹苗的質量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗的高度,規(guī)定高于128厘米的樹苗為“良種樹苗”,測得高度如下(單位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根據(jù)抽測結果,畫出甲、乙兩種樹苗高度的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出對兩種樹苗高度的統(tǒng)計結論;
(2)設抽測的10株甲種樹苗高度平均值為x,將這10株樹苗的高度依次輸入按程序框圖進行運算(如圖),問輸出的S大小為多少?并說明S的統(tǒng)計學意義;
(3)若小王在甲種樹苗中隨機領取了5株進行種植,用樣本的頻率分布估計總體分布,求小王領取到的“良種樹苗”的株數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙兩人下棋,甲獲勝的概率是30%,甲不輸?shù)母怕蕿?0%,則乙不輸?shù)母怕剩ā 。?table style="margin-left:0px;width:650px;">A.50%B.60%C.70%D.80%

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

投擲一枚質地均勻的正方體骰子兩次,第一次出現(xiàn)向上的點數(shù)為a,第二次出現(xiàn)向上的點數(shù)為b,直線l1的方程為ax-by-3=0,直線l2的方程為x-2y-2=0,則直線l1與直線l2有交點的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

連續(xù)投擲兩次骰子得到的點數(shù)分別為m,n,向量a=(m,n)與向量b=(1,0)的夾角記為α,則α∈(0,)的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從字母、、、、中任取兩個不同的字母,則取到字母的概率為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙兩人進行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝,根據(jù)經驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(   )
A.0.216B.0.36C.0.432D.0.648

查看答案和解析>>

同步練習冊答案