已知點(diǎn)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸的上方,PA⊥PF。
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值。
解:(1)由已知可得點(diǎn)A(-6,0),F(xiàn)(0,4),
設(shè)點(diǎn)P(x,y),則,
由已知可得,則,
解得:或x=-6,由于y>0,只能
于是,
所以,點(diǎn)P的坐標(biāo)是。
(2)直線AP的方程是,
設(shè)點(diǎn)M(m,0),則M到直線AP的距離是,
于是,
,解得:m=2,
橢圓上的點(diǎn)(x,y)到點(diǎn)M的距離d,
,
由于
所以,當(dāng)時(shí),d取得最小值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省懷化市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案