如圖,在直四棱柱A1B1C1 D1-ABCD中,當?shù)酌嫠倪呅蜛BCD滿足條件
 
時,有A1 B⊥B1 D1.(注:填上你認為正確的一種條件即可,不必考慮所有可能的情形.
考點:直線與平面垂直的性質
專題:空間位置關系與距離
分析:根據(jù)題意,由A1B⊥B1D1,結合直棱柱的性質,分析底面四邊形ABCD,只要B1D1⊥A1C1,進而驗證即可.
解答: 解:∵四棱柱A1B1C1D1-ABCD是直棱柱,
∴A1D⊥平面A1B1C1D1,
∴B1D1⊥A1D,若A1B⊥B1D1
則B1D1⊥平面A1C1BD,
∴B1D1⊥A1C1,
故答案為:對角線A1C1與B1D1互相垂直
點評:本題主要考查了棱柱的幾何特征以及空間線線,線面,面面垂直關系的轉化與應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=ax2+3x+1,a∈R,x∈R},B={x|y=
3-x
+2x+1,x∈R},若B⊆A,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)g(x)=ax-x-a(a>0且a≠1)圖象上有兩個不同的點關于原點對稱,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+y2=1與直線x-y+b=0相交于P、Q兩點,O為坐標原點,若OP⊥OQ,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0,則有( 。
A、f(0)>f(2)
B、f(0)=f(2)
C、f(0)<f(2)
D、f(0),f(2)關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與該圓C總有兩個不同交點;
(2)設直線l與圓C交與A、B兩點,且|AB|=
19
,求該直線的斜率;
(3)求弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓C過點(1,0)且與直線x=-1相切.
(1)求動圓圓心C的軌跡E方程;
(2)設A,B為軌跡E上異于原點O的兩個不同點,直線OA,OB的傾斜角分別為α,β,且α+β=45°.當α,β變化時,求證:直線AB恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M是橢圓
x2
25
+
y2
16
=1
上的一點,F(xiàn)1,F(xiàn)2為焦點,∠F1MF2=
π
6
,則△MF1F2的面積為( 。
A、
16
3
3
B、16(2+
3
)
C、16(2-
3
)
D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),且當x∈(0,+∞)時f(x)=x(1+
3x
),則當x∈(-∞,0)時,f(x)等于( 。
A、-x(1+
3x
B、x(1+
3x
C、-x(1-
3x
D、x(1-
3x

查看答案和解析>>

同步練習冊答案