如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,E是PB的中點,AB=2AD=2CD=2,PC=
2

(Ⅰ)求證:AC⊥平面PBC;
(Ⅱ)求三棱錐C-ABE高的大。
考點:直線與平面垂直的判定,棱錐的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由線面垂直得AC⊥PC,由勾股定理得AC⊥BC,由此能證明AC⊥平面PBC.
(Ⅱ)由△PBC為等腰直角三角形,AC為三棱錐A-BCE的高.利用等積法能求出三棱錐C-ABE的高.
解答: (Ⅰ)證明:∵PC⊥底面ABCD,AC?平面ABCD,∴AC⊥PC,
∵AB=2,AD=CD=1,∴AC=BC=
2
,
∴AC2+BC2=AB2,∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC.
(Ⅱ)解:由PC=
2
,知△PBC為等腰直角三角形,
S△BCE=
1
2
S△PBC=
1
2
,
由(Ⅰ)知AC為三棱錐A-BCE的高.
∵Rt△PCA≌Rt△PCB≌Rt△ABC,PA=PB=AB=2,
S△ABE=
1
2
S△PAB=
3
2

設(shè)三棱錐C-ABE的高為h,
1
3
S△ABE•h=
1
3
S△BCE•AC⇒
1
3
3
2
•h=
1
3
1
2
2
⇒h=
6
3

故三棱錐C-ABE的高等于
6
3
點評:本題考查直線與平面垂直的證明,考查三棱錐的高的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實數(shù)k1,k2滿足k1k2=-
1
9

(Ⅰ)證明:l1與l2相交;
(Ⅱ)求l1與l2的交點P的軌跡C的方程;
(Ⅲ)過點Q(1,0)作直線l(與x軸不垂直)與軌跡C交于M、N兩點,與y軸交于點R,若
RM
MQ
,
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(1,3),
OB0
=(2,1),|
OBn
|=
1
2
|
OBn-1
|(n∈N+).
(1)判斷△AB0B1的形狀,并說明理由;
(2)求數(shù)列{|
Bn-1Bn
|}(n∈N+)的通項公式;
(3)若△ABn-1Bn的面積為S △ABn-1Bn=an(n∈N+),求
lim
n→∞
(a1+a2+…+an).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(-1,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點,過F且與x軸垂直的直線被橢圓截得的弦長為3.
(1)求橢圓C的方程;
(2)設(shè)過點P(0,-3)的直線l與橢圓C交于A,B兩點,點C是線段AB上的點,且
1
|PC|2
1
|PA|2
,
1
|PB|2
的等差中項,求點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx,其中實數(shù)a為常數(shù).
(Ⅰ)當(dāng)a=-l時,確定f(x)的單調(diào)區(qū)間:
(Ⅱ)若f(x)在區(qū)間(0,e](e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時,證明|f(x)|>
lnx
x
+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班聯(lián)歡晚會玩投球游戲,規(guī)則如下:每人最多可連續(xù)投5只球,累積有三次投中即可獲獎;否則不獲獎.同時要求在以下兩種情況下中止投球:①已獲獎;②累積3次沒有投中目標(biāo).已知某同學(xué)每次投中目標(biāo)的概率是常數(shù)p(p>0.5),且投完3次就中止投擲的概率為
1
3
,設(shè)游戲結(jié)束時,該同學(xué)投出的球數(shù)為X.
(1)求p的值;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R).
(1)當(dāng)a=-
1
2
時,討論函數(shù)f(x)的單調(diào)性;
(2)在區(qū)間(1,2)內(nèi)任取兩個實數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點A(3,
5
2
),B(4,
3
),C(-3,-
5
2
),D(5,0),其中三點在雙曲線
x2
a2
-
y2
b2
=1,(a>0,b>0)上,另一點在直線l上.
(1)求雙曲線方程;
(2)設(shè)直線l的斜率存在且為k,它與雙曲線的同一支分別交于兩點E、F(F點在上方,E點在下方),M、N分別為雙曲線的左、右頂點,求滿足條件S△MDF=4S△DNE的k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在邊長為a的正方形ABCD中,E、F分別為邊BC、CD中點,設(shè)
AE
=
α
AF
=
β

(1)試用
α
、
β
表示向量
AB
AD
;
(2)求向量
α
β
夾角的大。

查看答案和解析>>

同步練習(xí)冊答案