精英家教網 > 高中數學 > 題目詳情
可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數列;
(2)設數列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數列(不需要證明它滿足條件); 若不存在,說明理由.
分析:(1)取n=1,求出首項a1的值,取n=2,求出a2的值,取n=3,可求出a3的值,從而求出所求;
(2)由已知,Sn2=a13+a23+…+an3,用n+1替換n,得到(Sn-an+12=a13+…+an+13,兩式相減,可證得結論;
(3)滿足(2)中條件的數列遞推式為an+1=an+1或-an.所以符合a2011=2009的數列的前2011項為1,2,…,k-1,k-k,k,k-1,…,2009,之后的項只需滿足遞推式即可.但要注意不能出現(xiàn)值為0的項.
解答:解:(1)取n=1,有a12=a13,又a1≠0,所以a1=1.
取n=2,有(1+a22=1+a23,于是a2(a2-2)(a2+1)=0,又a2≠0,所以a2=-1或2.
取n=3,有(1+a2+a32=1+a23+a33
當a2=-1時,a32=a33,又a3≠0,所以a3=1.
當a2=2時,(1+2+a32=1+23+a33,整理得a3(a3-3)(a3+2)=0,所以a3=3或-2.
綜上,說有滿足條件的數列為1,-1,1,或1,2,3,或1,2,-2.
(2)由已知,Sn2=a13+a23+…+an3,用n+1替換n,得到(Sn-an+12=a13+…+an+13,兩式相減,
有an+13-(Sn-an+12-Sn2=(2Sn-an+1)an+1,因an+1≠0,所以an+12-an+1=2Sn,n∈N+
(3)存在,1,-1,1,2,3,…,2008,2009,2010,…是一個滿足條件的無窮數列.
點評:本題主要考查了數列的應用,同時考查了數列的求和,同時考查了推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}是一個無窮數列,記Tn=
n+2i=1
2i-1ai+2a1-a3-2n+2an+1
,n∈N*
(1)若{an}是等差數列,證明:對于任意的n∈N*,Tn=0;
(2)對任意的n∈N*,若Tn=0,證明:an是等差數列;
(3)若Tn=0,且a1=0,a2=1,數列bn滿足bn=2an,由bn構成一個新數列3,b2,b3,…,設這個新數列的前n項和為Sn,若Sn可以寫成ab,(a,b∈N,a>1,b>1),則稱Sn為“好和”.問S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•姜堰市模擬)可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數列;
(2)設數列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數列;
(2)設數列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省泰州市姜堰市蔣垛中學高三聯(lián)考數學試卷(解析版) 題型:解答題

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設由三項組成的數列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數列;
(2)設數列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

同步練習冊答案