若隨機變量X的概率分布密度函數(shù)是φμ,δ(x)=
1
2
e -
(x+2)2
8
 (x∈R),則E(2X-1)=
 
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:確定μ=-2,即可求出E(2X-1)、
解答: 解:∵隨機變量X的概率分布密度函數(shù)是φμ,δ(x)=
1
2
e -
(x+2)2
8
 (x∈R),
∴μ=-2,
∴E(2X-1)=2×(-2)-1=-5.
故答案為:-5.
點評:本題考查隨機變量X的概率分布密度函數(shù),考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個斜三棱柱的一個側(cè)面的面積為S,另一條側(cè)棱到這個側(cè)面的距離為a,則這個三棱柱的體積是(  )
A、
1
3
Sa
B、
1
4
Sa
C、
1
2
Sa
D、
2
3
Sa

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=cos2x-sinx,x∈[-
π
4
,
π
4
]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在Rt△ABC中,∠C=90°,tanA=2,求cosA和sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(b>0),若對于任意實數(shù)x,總有f(x)≥0,求
f(1)
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α與△ABC的兩邊AB,AC分別交于D,E,且AD:DB=AE:EC,求證:BC∥平面α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為第二象限角,f(α)=
sin(5π-α)sin(
3
2
π+α)cos(
3
2
π-α)tan(-α-π)
sin(3π+α)tan(π-α)sin(-
π
2
-α)

(1)化簡f(α)
(2)若cos(α-
3
2
π)=
1
3
,求f(α)的值
(3)若α=-1380°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論函數(shù)f(x)=(
2
3
)
-x2+2x
的單調(diào)性,并求其值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ex(sinx-1)
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)當x∈[-π,π]時,求函數(shù)的最大值和最小值.

查看答案和解析>>

同步練習冊答案