【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,是的中點(diǎn).
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)要證面面平行即證線面平行,可根據(jù)面面平行的判定定理求證,可通過平面來進(jìn)行求證;
(2)線面角正弦值的求法可通過等體積法進(jìn)行轉(zhuǎn)化,通過求出點(diǎn)到平面距離,再結(jié)合正弦三角函數(shù)定義即可求解
(1)取的中點(diǎn),連結(jié),
∵分別是的中點(diǎn),
∴,且,
∵,
∴,
∴,∴,
∵,∴平面,
∵平面,∴平面平面.
(2)如圖,連結(jié),
由(1)知平面,∴,
在中,,同理,
在梯形中, ,,
∵,為的中點(diǎn),∴,
由題意得,
,
設(shè)為的中點(diǎn),連結(jié),由題意得,
∵平面平面,平面,平面平面,
∴平面,
設(shè)點(diǎn)到平面的距離為,
∵,∴,解得.
∵,∴直線與平面所成角的正弦值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面,四邊形是正方形,且,點(diǎn),,分別是線段,,的中點(diǎn).
(1)求異面直線與所成角的大小(結(jié)果用反三角表示);
(2)在線段上是否存在一點(diǎn),使,若存在,求出的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)當(dāng)時,求函數(shù)的值域以及函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如表1
為了研究計算方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,令,得到表2:
(1)求:關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求出y關(guān)于的回歸方程;
(3)用所求回歸方程預(yù)測到2019年年底,該地儲蓄存款額可達(dá)多少?
附:對于線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了她們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為150分),得到的樣本頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
3 | 0.06 | |
14 | 0.28 | |
15 | 0.30 | |
4 | 0.08 | |
合計 |
(1)在給出的樣本頻率分布表中,求,,,的值;
(2)估計成績在120分以上(含120分)學(xué)生的比例;
(3)抽取的50名學(xué)生中,為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在的學(xué)生中選兩位同學(xué),共同幫助成績在中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?35分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,試求當(dāng)時,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲廠商對新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時以內(nèi)(含3小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時間小時)滿足關(guān)系式:;
②3到5小時(含5小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);
③超過5小時為不健康時間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時間成正比例關(guān)系,比例系數(shù)為50.
⑴當(dāng)時,寫出累積經(jīng)驗(yàn)值E與游玩時間t的函數(shù)關(guān)系式,并求出游玩6小時的累積經(jīng)驗(yàn)值;
⑵該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com