如圖2-1-11,在Rt△ABC中,∠BCA =90°,以BC為直徑的⊙OABE,DAC的中點,連結(jié)BD交⊙OF點.求證: =.

圖2-1-11

思路解析:要證=,雖然四條線段分別在△BEF與△BCF中,但這兩個三角形一個是鈍角三角形,另一個是直角三角形,不可能相似,故只能夠借助中間比.

證明:連結(jié)CE,BC為⊙O的直徑,?

∴∠BFC =90°,∠BEC=90°.?

又∵∠ACB =90°,∴∠BCE =∠A.?

又∵∠BFE =∠BCE,∴∠BFE =∠A.?

∴△BEF∽△BAD.∴=.?

∵∠BFC =∠BCA,∠CBD=∠CBD,?

∴△CBF∽△DBC.∴=.?

又∵AD =CD,∴=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市高三2月調(diào)研考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友20131111在某淘寶店的網(wǎng)購情況,隨機抽查了該市當天名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表(如圖):

若網(wǎng)購金額超過千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過千元的顧客定義為“非網(wǎng)購達人”,已知“非網(wǎng)購達人”與“網(wǎng)購達人”人數(shù)比恰好為

1試確定,,,的值,并補全頻率分布直方圖(如圖(2)

2該營銷部門為了進一步了解這網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定,若需從這人中隨機選取進行問卷調(diào)查設(shè)為選取的人中“網(wǎng)購達人”的人數(shù),求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

梯形的兩腰和一底如果相等,它的對角線必平分另一底上的兩個角.

已知在梯形ABCD中(如圖2-1-11),AB=DC=AD,ACBD是它的對角線,求證:AC平分∠BCD,DB平分∠CBA.

          圖2-1-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

梯形的兩腰和一底如果相等,它的對角線必平分另一底上的兩個角.

已知在梯形ABCD中(如圖2-1-11),AB=DC=AD,ACBD是它的對角線,求證:AC平分∠BCD,DB平分∠CBA.

圖2-1-11

查看答案和解析>>

同步練習(xí)冊答案