【題目】新學(xué)年伊始,某中學(xué)學(xué)生社團(tuán)開(kāi)始招新,某高一新生對(duì)“海濟(jì)公益社”、“理科學(xué)社”、“高音低調(diào)樂(lè)社”很感興趣,假設(shè)她能被這三個(gè)社團(tuán)接受的概率分別為 , , .
(1)求此新生被兩個(gè)社團(tuán)接受的概率;
(2)設(shè)此新生最終參加的社團(tuán)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
【答案】
(1)解:設(shè)事件A表示“此新生能被海濟(jì)公益社接受”,事件B表示“此新生能理科學(xué)社接受”,
事件C表示“此新生能被高音低調(diào)樂(lè)社接受”,
則P(A)= ,P(B)= ,P(C)= ,
∴此新生被兩個(gè)社團(tuán)接受的概率為:
P( +A C+ )= + + = .
(2)解:由題意得ξ的可能取值為0,1,2,3,
P(ξ=0)= = ,
P(ξ=1)= = ,
P(ξ=2)= + + = .
P(ξ=3)= = ,
∴ξ的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
E(X)= = .
【解析】(1)設(shè)事件A表示“此新生能被海濟(jì)公益社接受”,事件B表示“此新生能理科學(xué)社接受”,事件C表示“此新生能被高音低調(diào)樂(lè)社接受”,此新生被兩個(gè)社團(tuán)接受的概率為:P( +A C+ ),由此能求出結(jié)果.(2)由題意得ξ的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】關(guān)于本題考查的離散型隨機(jī)變量及其分布列,需要了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個(gè)極值點(diǎn),則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是( )
A.a≤1
B.a≥1
C.a≤0
D.a≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并給出證明;
(2)解不等式: ;
(3)若函數(shù)在上單調(diào)遞減,比較f(2)+f(4)+…+f(2n)與2n(n∈N*)的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)= .
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時(shí),對(duì)于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大衍數(shù)列,來(lái)源于中國(guó)古代著作《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論.其前10項(xiàng)為:0、2、4、8、12、18、24、32、40、50.通項(xiàng)公式: ,如果把這個(gè)數(shù)列{an}排成如圖形狀,并記A(m,n)表示第m行中從左向右第n個(gè)數(shù),則A(10,4)的值為( )
A.1200
B.1280
C.3528
D.3612
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E: (a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過(guò)點(diǎn)O且斜率為 的直線與直線AB相交M,且 .
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過(guò)P,Q兩點(diǎn),求橢圓E的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com