精英家教網(wǎng)如圖,一圓形靶分成A,B,C三部分,其面積之比為1:1:2.某同學向該靶投擲3枚飛鏢,每次1枚.假設他每次投擲必定會中靶,且投中靶內(nèi)各點是隨機的.
(Ⅰ)求該同學在一次投擲中投中A區(qū)域的概率;
(Ⅱ)設x表示該同學在3次投擲中投中A區(qū)域的次數(shù),求x的分布列及數(shù)學期望;
(Ⅲ)若該同學投中A,B,C三個區(qū)域分別可得3分,2分,1分,求他投擲3次恰好得4分的概率.
分析:(1)題考查的知識點是幾何概型的意義,關(guān)鍵是要找出滿足條件A的區(qū)域面積和總面積之間的關(guān)系,再根據(jù)幾何概型計算公式給出答案;(2)根據(jù)(1)中投中A區(qū)域的概率,不難列出x的分布列并進行數(shù)學期望;(3)考查的是古典概型,我們可以列舉出三次投擲總的基本事件個數(shù)及恰得4分的事件個數(shù),代入古典概型計算公式求解.
解答:解:(Ⅰ)設該同學在一次投擲中投中A區(qū)域的概率為P(A),
依題意,P(A)=
1
4

(Ⅱ)依題意知,X~B(3,
1
4
)
,P(X=k)=
C
k
n
(
1
4
)k(1-
1
4
)n-k
(k=0,1,2,3)
從而X的分布列為:
精英家教網(wǎng)
EX=np=
3
4

(Ⅲ)設Bi表示事件“第i次擊中目標時,擊中B區(qū)域”,Ci表示事件“第i次擊中目標時,擊中C區(qū)域”,i=1,2,3.
依題意知P=P(B1C2C3)+P(C1B2C3)+P(C1C2B3)=3×
1
4
×
1
2
×
1
2
=
3
16
點評:求古典概型的概率的基本步驟為:(1)算出所有基本事件的個數(shù)n.(2)求出事件A包含的所有基本事件數(shù)m.(3)代入公式,求出P(A).幾何概型中的三種基本度量為長度、面積和體積,在解題時要準確把握,要把問題向它們作合理地轉(zhuǎn)化,要注意古典概型與幾何概型的區(qū)別(基本事件的有限性和無限性),正確選用幾何概型解題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年湖南師大附中高三(下)第八次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,一圓形靶分成A,B,C三部分,其面積之比為1:1:2.某同學向該靶投擲3枚飛鏢,每次1枚.假設他每次投擲必定會中靶,且投中靶內(nèi)各點是隨機的.
(Ⅰ)求該同學在一次投擲中投中A區(qū)域的概率;
(Ⅱ)設x表示該同學在3次投擲中投中A區(qū)域的次數(shù),求x的分布列及數(shù)學期望;
(Ⅲ)若該同學投中A,B,C三個區(qū)域分別可得3分,2分,1分,求他投擲3次恰好得4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年安徽省安慶市潛山中學高考數(shù)學模擬試卷(解析版) 題型:解答題

如圖,一圓形靶分成A,B,C三部分,其面積之比為1:1:2.某同學向該靶投擲3枚飛鏢,每次1枚.假設他每次投擲必定會中靶,且投中靶內(nèi)各點是隨機的.
(Ⅰ)求該同學在一次投擲中投中A區(qū)域的概率;
(Ⅱ)設x表示該同學在3次投擲中投中A區(qū)域的次數(shù),求x的分布列及數(shù)學期望;
(Ⅲ)若該同學投中A,B,C三個區(qū)域分別可得3分,2分,1分,求他投擲3次恰好得4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年高考數(shù)學預測試卷3(理科)(解析版) 題型:解答題

如圖,一圓形靶分成A,B,C三部分,其面積之比為1:1:2.某同學向該靶投擲3枚飛鏢,每次1枚.假設他每次投擲必定會中靶,且投中靶內(nèi)各點是隨機的.
(Ⅰ)求該同學在一次投擲中投中A區(qū)域的概率;
(Ⅱ)設x表示該同學在3次投擲中投中A區(qū)域的次數(shù),求x的分布列及數(shù)學期望;
(Ⅲ)若該同學投中A,B,C三個區(qū)域分別可得3分,2分,1分,求他投擲3次恰好得4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市高三元月調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,一圓形靶分成A,B,C三部分,其面積之比為1:1:2.某同學向該靶投擲3枚飛鏢,每次1枚.假設他每次投擲必定會中靶,且投中靶內(nèi)各點是隨機的.
(Ⅰ)求該同學在一次投擲中投中A區(qū)域的概率;
(Ⅱ)設x表示該同學在3次投擲中投中A區(qū)域的次數(shù),求x的分布列及數(shù)學期望;
(Ⅲ)若該同學投中A,B,C三個區(qū)域分別可得3分,2分,1分,求他投擲3次恰好得4分的概率.

查看答案和解析>>

同步練習冊答案