在極坐標(biāo)系中,為極點(diǎn),點(diǎn)(2,),().
(Ⅰ)求經(jīng)過(guò),,的圓的極坐標(biāo)方程;
(Ⅱ)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程為是參數(shù),為半徑),若圓與圓相切,求半徑的值.
(Ⅰ)(Ⅱ)或
解析試題分析:(Ⅰ)先以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,再將O、A、B三點(diǎn)的極坐標(biāo)化為直角坐標(biāo),利用待定系數(shù)法設(shè)出圓的標(biāo)準(zhǔn)方程或一般方程,將O、A、B的坐標(biāo)代入方程,列出關(guān)于參數(shù)的方程組,解出參數(shù),就求出了過(guò)OAB三點(diǎn)的圓的方程,再利用直角坐標(biāo)方程與極坐標(biāo)方程的互化公式,將過(guò)OAB三點(diǎn)圓的直角坐標(biāo)方程化為極坐標(biāo)方程;(Ⅱ)將圓D的參數(shù)方程化為普通方程,求出圓心坐標(biāo)與半徑,由(Ⅰ)中圓C的直角坐標(biāo)方程求出圓心C的坐標(biāo)與半徑,利用兩圓相切,圓心間的距離等于半徑之和或之差,列出關(guān)于的方程,解出.
試題解析:(Ⅰ)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,
∴點(diǎn)O(0,0),A(0,2),B(2,2);
過(guò)O,A,B三點(diǎn)的圓C的普通方程是(x-1)2+(y-1)2=2,
即x2-2x+y2-2y=0;
化為極坐標(biāo)方程是ρ2=2ρcosθ+2ρsinθ,
即 5分
( II)圓D的參數(shù)方程是參數(shù),為半徑)化為普通方程是(x+1)2+(y+1)2=a2;
圓C與圓D的圓心距|CD|==,
當(dāng)圓C與圓D相切時(shí),=或=,解得或. 10分
考點(diǎn):極坐標(biāo)與做極坐標(biāo)互化,待定系數(shù)法,圓的標(biāo)準(zhǔn)方程,直角坐標(biāo)方程與極坐標(biāo)方程互化,參數(shù)方程與普通方程互化,兩圓的位置關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.求:(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面≤的公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知極坐標(biāo)系的原點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸為軸正半軸,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)寫(xiě)出的直角坐標(biāo)方程,并說(shuō)明是什么曲線?
(2)設(shè)直線與曲線相交于、兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線的方程為(為參數(shù)),曲線的極坐標(biāo)方程為,若曲線與相交于、兩點(diǎn).
(1)求的值;
(2)求點(diǎn)到、兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(坐標(biāo)系與參數(shù)方程選做題)已知A是曲線ρ=3cosθ上任意一點(diǎn),則點(diǎn)A到直線ρcosθ=1距離的最大值是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+sinθ)=2的距離為d.求d的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com