【題目】已知曲線上任意一點到的距離比到軸的距離大1橢圓的中心在原點,一個焦點與的焦點重合,長軸長為4

(Ⅰ)求曲線和橢圓的方程;

橢圓上是否存在一點,經(jīng)過點作曲線的兩條切線為切點)使得直線過橢圓的上頂點,若存在,求出切線的方程,不存在,說明理由.

【答案】1,2

【解析】試題分析:(1曲線,曲線;(2)設(shè)方程 代入,得到韋達(dá)定理,由切線方程得到,又在橢圓上,可得: ,所以,寫出切線方程。

試題解析:

1曲線,曲線

2若存在,由題意設(shè)方程 代入化簡得

設(shè),

由于,所以切線方程為:

同理切線方程為:

由②③得

在橢圓上,可得:

代入①有

所以橢圓上存在一點符合題意,此時兩條切線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形與梯形所在平面互相垂直,,,點中點 .

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為Cx萬元,當(dāng)年產(chǎn)量不足80千件時,Cxx2+10x萬元;當(dāng)年產(chǎn)量不少于80千件時,Cx=51x+-1 450萬元).通過市場分析,若每件售價為500元時,該廠年內(nèi)生產(chǎn)的商品能全部銷售完

1寫出年利潤L萬元關(guān)于年產(chǎn)量x千件的函數(shù)解析式;

2年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)過點(1, ),且離心率e=.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),橢圓的右頂點為D,且滿足·=0,試判斷直線l是否過定點,若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.

1)求該網(wǎng)民至少購買4種商品的概率;

2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856307)(12分)

某老師為了分析學(xué)生的學(xué)習(xí)情況,隨機抽取了班上20名學(xué)生某次期末考試的成績(滿分為150分)進(jìn)行分析,統(tǒng)計如下:

男生:133 131 130 126 123 120 116 109 107 105

女生:136 127 125 123 119 118 117 114 113 108

(Ⅰ)計算男、女生成績的平均值并分析比較男、女生成績的分散程度;

(Ⅱ)現(xiàn)從分?jǐn)?shù)在120分以下的女同學(xué)中隨機抽取2位,求這兩位同學(xué)分?jǐn)?shù)之差的絕對值小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆吉林省普通中學(xué)高三第二次調(diào)研】某校冬令營有三名男同學(xué)A,B,C和三名女同學(xué)X,Y,Z,

1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;

2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C,其中e為橢圓離心率),焦距為2,過點M40)的直線l與橢圓C交于點A,B,點BAM之間.又點A,B的中點橫坐標(biāo)為

)求橢圓C的標(biāo)準(zhǔn)方程;

)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,二面角的大小為90°, , ,

1)求證:

2)試確定的值,使得直線與平面所成的角的正弦值為

查看答案和解析>>

同步練習(xí)冊答案