已知動點M到定點F(1,0)的距離與到定直線l:x=-1的距離相等,點C在直線上。
(1)求動點M的軌跡方程;
 (2)設(shè)過定點F,法向量=(4,-3)的直線與(1)中的軌跡相交于A,B兩點,判斷能否為鈍角并說明理由。
解:(1)動點M到定點F(1,0)的距離與到定直線l:x=-1:的距離相等,所以M的軌跡是以點f為焦點,直線l為準線的拋物線,軌跡方程為;
(2)由題意,直線AB的方程為4x-3y-4=0
故A、B兩點的坐標滿足方程組
得A(4,4),B(,-1)                                                        
設(shè)C(-1,y),則,
,所以不可能為鈍角。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知動點M到定點F(1,0)的距離與到定直線l:x=-1的距離相等,點C在直線l上.
(1)求動點M的軌跡方程;
(2)設(shè)過定點F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點,判斷∠ACB能否為鈍角并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知動點M到定點F(1,0)的距離與到定直線l:x=-1的距離相等,點C在直線l上.
(1)求動點M的軌跡方程;
(2)設(shè)過定點F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點且點A在x軸的上方,判斷∠ACB能否為鈍角并說明理由.進一步研究∠ABC為鈍角時點C縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)我們知道:“過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心”(定點).受此啟發(fā),研究下面問題:
對于拋物線y2=2px(p>0)上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?

查看答案和解析>>

同步練習(xí)冊答案