【題目】以下四個(gè)結(jié)論,正確的是(

①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;

②在回歸直線方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量增加0.13個(gè)單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對(duì)于兩個(gè)分類變量,求出其統(tǒng)計(jì)量的觀測(cè)值,觀測(cè)值越大,我們認(rèn)為有關(guān)系的把握程度就越大.

A.②④B.②③C.①③D.③④

【答案】D

【解析】

利用系統(tǒng)抽樣和分層抽樣的知識(shí)判斷①的正確性;利用回歸直線方程的知識(shí)判斷②的正確性;利用頻率分布直方圖的知識(shí)判斷③的正確性;利用獨(dú)立性檢驗(yàn)的知識(shí)判斷④的正確性.

①,是系統(tǒng)抽樣,不是分層抽樣,所以①錯(cuò)誤. ②,增加,所以②錯(cuò)誤. ③,在頻率分布直方圖中,所有小矩形的面積之和是1,所以③正確. ④,對(duì)于兩個(gè)分類變量,求出其統(tǒng)計(jì)量的觀測(cè)值,觀測(cè)值越大,我們認(rèn)為有關(guān)系的把握程度就越大,所以④正確.

綜上所述,正確的序號(hào)為③④.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記;

1)求實(shí)數(shù)的值;

2)若不等式成立,求實(shí)數(shù)的取值范圍;

3)定義在上的函數(shù),設(shè),其中將區(qū)間任意劃分成個(gè)小區(qū)間,如果存在一個(gè)常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中.

1)當(dāng)時(shí),求函數(shù)單調(diào)遞增區(qū)間;

2)求函數(shù)的圖象在點(diǎn)處的切線方程;

3)是否存在實(shí)數(shù)的值,使得上有最大值或最小值,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,是等腰三角形,且.四邊形ABCD是直角梯形,,,,.

1)求證:平面PDC.

2)請(qǐng)?jiān)趫D中所給的五個(gè)點(diǎn)P,A,BC,D中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在直線與直線BC垂直,并給出證明.

3)當(dāng)平面平面ABCD時(shí),求直線PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

收入(元)

人數(shù)

30

40

10

8

7

5

1)若某員工2月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)計(jì)算一下調(diào)整后該員工的實(shí)際收入比調(diào)整前增加了多少?

2)現(xiàn)從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)恰有1個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為(

A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國與世界互聯(lián)互通的國際平臺(tái)和國際互聯(lián)網(wǎng)共享共治的中國平臺(tái),讓各國在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開,組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)這次大會(huì)志愿者主要通過現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計(jì)算說明能

否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為選擇哪種報(bào)名方式與性別有關(guān)系”?

男性

女性

總計(jì)

現(xiàn)場(chǎng)報(bào)名

50

網(wǎng)絡(luò)報(bào)名

31

總計(jì)

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,其中.

(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)區(qū)間(不要求證明);

(2)若對(duì)于任意的,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案