精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,以原點O為頂點,以y軸為對稱軸的拋物線E的焦點為F(0,1),點M是直線l:y=m(m<0)上任意一點,過點M引拋物線E的兩條切線分別交x軸于點S,T,切點分別為B,A.

(1)求拋物線E的方程;

(2)求證:點S,T在以FM為直徑的圓上.

【答案】(1);(2)見解析

【解析】

試題分析:第一問可以根據題意直接設出拋物線的標準方

程的形式,根據拋物線的焦點坐標,得出對應的的值,

從而得出拋物線的方程,第二問應用點在圓上的對應結論,即直徑對的圓周角為直角,得出兩線垂直的對應結果,從而得證,還有就是ST兩點證明的思路是一樣的,所以,證明一個,另一個點可以用同理可得來帶過.

試題解析:()設拋物線E的方程為

依題意,

所以拋物線E的方程為4

)設點

,否則切線不過點M

7

10

∴AM⊥FT,即點T在以FM為直徑的圓上;

同理可證點S在以FM為直徑的圓上,

所以ST在以FM為直徑的圓上。 12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列是公差為正數的等差數列,其前項和為

,

(1)求數列的通項公式.

(2)設數列滿足,

①求數列的通項公式;

②是否存在正整數,使得,,成等差數列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,函數 ,若對所有的總存在,使得成立,則實數的取值范圍是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數的底數).
(1)求實數a的值;
(2)用min{m,n}表示m,n中的最小值,設函數g(x)=min{f(x),x﹣ }(x>0),若函數h(x)=g(x)﹣cx2為增函數,求實數c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:x∈[-1,2],函數f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是(  )

A. x0∈(-1,1),cos x0

B. “-3<m<0”是“函數f(x)=x+log2x+m在區(qū)間上有零點”的必要不充分條件

C. x=是曲線f(x)=sin 2x+cos 2x的一條對稱軸

D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,分別為橢圓的左、右焦點,且.

(1)求橢圓的方程;

(2)設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與直線有公共點時,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)當a=2時,求函數f(x)的最值;
(2)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數,證明: <a<

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,A,B,C,D四點在同一圓上,BC與AD的延長線交于點E,點F在BA的延長線上.

(1)若 = =1,求 的值;
(2)若EF2=FAFB,證明:EF∥CD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數和中位數;

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

同步練習冊答案