【題目】已知四棱錐的底面為直角梯形,,°,底面,且,的中點(diǎn).

(1)證明平面平面;

(2)求所成角的余弦值;

(3)求平面與平面所成二面角(銳角的余弦值.

【答案】(1)見解析;(2);(3)

【解析】

試題(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.

試題解析:證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為.

(1)證明:因

由題設(shè)知,且是平面內(nèi)的兩條相交直線,由此得.又在面上,故面⊥面.

(2)因

(3)平面的一個(gè)法向量設(shè)為,

平面的一個(gè)法向量設(shè)為,

所求二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,為邊的中點(diǎn).將△沿翻折,得到四棱錐.設(shè)線段的中點(diǎn)為,在翻折過(guò)程中,有下列三個(gè)命題:

總有平面;

三棱錐體積的最大值為;

存在某個(gè)位置,使所成的角為

其中正確的命題是____.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會(huì),每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績(jī)對(duì)學(xué)生進(jìn)行綜合評(píng)估,已知某年度參與評(píng)估的畢業(yè)生共有2000名,其評(píng)估成績(jī)近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評(píng)估成績(jī)作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了頻率分布直方圖:

(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)若學(xué)校規(guī)定評(píng)估成績(jī)超過(guò)分的畢業(yè)生可參加三家公司的面試.

(。┯脴颖酒骄鶖(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,請(qǐng)利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);

(ⅱ)若三家公司每家都提供甲、乙、丙三個(gè)崗位,崗位工資表如下:

公司

甲崗位

乙崗位

丙崗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李華同學(xué)取得了三個(gè)公司的面試機(jī)會(huì),經(jīng)過(guò)評(píng)估,李華在三個(gè)公司甲、乙、丙三個(gè)崗位的面試成功的概率均為,李華準(zhǔn)備依次從三家公司進(jìn)行面試選崗,公司規(guī)定:面試成功必須當(dāng)場(chǎng)選崗,且只有一次機(jī)會(huì).李華在某公司選崗時(shí),若以該崗位工資與未進(jìn)行面試公司的工資期望作為抉擇依據(jù),問(wèn)李華可以選擇公司的哪些崗位?

并說(shuō)明理由.

附:,若隨機(jī)變量,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)是( 。

①若“p∨q”為真命題,則“p∧q”為真命題;

②“a∈(0,+∞),函數(shù)y=在定義域內(nèi)單調(diào)遞增”的否定;

③l為直線,α,β為兩個(gè)不同的平面,若l⊥β,α⊥β,則l∥α;

④“x∈R,≥0”的否定為“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面ABCD為直角梯形,,,側(cè)面底面ABCD,,

PB的中點(diǎn)為E,求證:平面PCD

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求曲線在點(diǎn)處的切線方程;

)當(dāng)時(shí),求證:函數(shù)有且僅有一個(gè)零點(diǎn);

)當(dāng)時(shí),寫出函數(shù)的零點(diǎn)的個(gè)數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)零點(diǎn),,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案