【題目】設(shè)fx)=etxt0),過(guò)點(diǎn)Pt,0)且平行于y軸的直線與曲線Cyfx)的交點(diǎn)為Q,曲線C過(guò)點(diǎn)Q的切線交x軸于點(diǎn)R,若S1,f1)),則PRS的面積的最小值是_____

【答案】

【解析】

計(jì)算Rt,0),PRt﹣(t,△PRS的面積為S,導(dǎo)數(shù)S,由S0t1,根據(jù)函數(shù)的單調(diào)性得到最值.

PQy軸,Pt,0),∴Qt,ft))即Qt,),

fx)=etxt0)的導(dǎo)數(shù)fx)=tetx,∴過(guò)Q的切線斜率kt,

設(shè)Rr,0),則k,∴rt

Rt,0),PRt﹣(t,

S1f1))即S1,et),∴△PRS的面積為S,

導(dǎo)數(shù)S,由S0t1

當(dāng)t1時(shí),S0,當(dāng)0t1時(shí),S0,∴t1為極小值點(diǎn),也為最小值點(diǎn),

∴△PRS的面積的最小值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體中,,的中點(diǎn),的中點(diǎn),為線段上一點(diǎn),且滿足,的中點(diǎn).

1)求證:平面;

2)求三棱錐的體積;

3)求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸的平面直角坐標(biāo)系中,曲線為參數(shù))

1)將化為直角坐標(biāo)系中普通方程,并說(shuō)明它們分別表示什么曲線;

2)若極坐標(biāo)系中上的點(diǎn)對(duì)應(yīng)的極角為,上的動(dòng)點(diǎn),求中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn),軸上存在一點(diǎn)滿足.

(1)求橢圓的方程;

(2)直線與橢圓相切于第一象限上的點(diǎn),且分別與軸、軸交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC三內(nèi)角A、BC所對(duì)邊的長(zhǎng)分別為a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C

1)求cosC的值;

2)若a3c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).

1)求p的值;

2)求證:數(shù)列{an}為等比數(shù)列;

3)證明:數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)的充要條件是x1,且y2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足,其中,且, 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對(duì)任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對(duì)任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)作直線的垂線交曲線兩點(diǎn)(軸上方),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點(diǎn),若線段的中點(diǎn)為,且直線的斜率為.

(1)求橢圓的方程;

(2)若過(guò)左焦點(diǎn)斜率為的直線與橢圓交于點(diǎn) 為橢圓上一點(diǎn),且滿足,問(wèn):是否為定值?若是,求出此定值,若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案