【題目】的內(nèi)角,的對邊長分別為,,,設(shè)的面積,滿足,,則的取值范圍是__________

【答案】

【解析】

利用三角形面積公式表示出S,利用余弦定理表示出cosB,可確定B,再利用正弦定理表示出a,c,代入已知等式中利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),根據(jù)正弦函數(shù)的性質(zhì)確定出范圍即可.

SacsinBcosB,Sa2+c2b2),

acsinB2accosB,

tanB

B0,π),

B;又,△ABC的內(nèi)角和A+B+Cπ,

A0C0,得0A,

由正弦定理,知a2sinc2sin),

∴(1a+2c21sin+4sin)=2sin+2cos2sin)(0x),∴

,

2sin2

故答案為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】

某學校高一數(shù)學興趣小組對學生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學生,記錄并整理了這些學生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓E(ab0)的離心率為,且橢圓E的短軸的端點到焦點的距離等于2

1)求橢圓E的標準方程;

2)己知A,B分別為橢圓E的左、右頂點,過x軸上一點P(異于原點)作斜率為k(k0)的直線l與橢圓E相交于C,D兩點,且直線ACBD相交于點Q.①若k1,求線段CD中點橫坐標的取值范圍;②判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)偶函數(shù)和奇函數(shù)的圖象如圖所示,集合A 與集合B 的元素個數(shù)分別為a,b,若,則a+b的值可能是( )

A. 12B. 13C. 14D. 15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在原點,焦點在軸上的拋物線過點.

1)求拋物線的標準方程;

2)斜率為的直線與拋物線交于、兩點,點是線段的中點,求直線的方程,并求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在以為圓心,6為半徑的圓內(nèi)有一點,點為圓上的任意一點,線段的垂直平分線和半徑交于點.

1)判斷點的軌跡是什么曲線,并求其方程;

2)記點的軌跡為曲線,過點的直線與曲線交于兩點,求的最大值;

3)在圓上的任取一點,作曲線的兩條切線,切點分別為,試判斷是否垂直,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)D是圓Ox2+y216上的任意一點,m是過點D且與x軸垂直的直線,E是直線mx軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當點D在圓O上運動時,記點Q的軌跡為曲線C

1)求曲線C的方程.

2)已知點P2,3),過F2,0)的直線l交曲線CA,B兩點,交直線x8于點M.判定直線PA,PMPB的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

(2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準扶貧,不落一人”的政策要求落實情況, 扶貧辦隨機走訪了1000位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式,若,則①;②;③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為復數(shù),為純虛數(shù),

1)當求點的軌跡方程;

2)當時,若為純虛數(shù),求:的值和的取值范圍.

查看答案和解析>>

同步練習冊答案