如圖,在矩形ABCD中,AB>·AD,E為AD的中點,連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設=k,是否存在實數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請說明理由.

 

 

【解析】假設存在實數(shù)k的值,滿足題設.

①先證明△AEF∽△DCE∽△ECF.因為EF⊥EC,

所以∠AEF=90°-∠DEC=∠DCE.

而∠A=∠D=90°,故△AEF∽△DCE.

故得.又DE=EA,所以.

又∠CEF=∠EAF=90°,所以△AEF∽△ECF.

②再證明可以取到實數(shù)k的值,使△AEF∽△BCF,

由于∠AFE+∠BFC≠90°,故不可能有∠AFE=∠BFC,

因此要使△AEF∽△BCF,應有∠AFE=∠BFC,

此時,有,又AE=BC,故得AF=BF=AB.

由△AEF∽△DCE,可知,

因此,AB2,所以,求得k=.

可以驗證,當k=時,這四個三角形都是有一個銳角等于60°的直角三角形,故它們都相似.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-4第1課時練習卷(解析版) 題型:解答題

化極坐標方程ρ2cosθ-ρ=0為直角坐標方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第2課時練習卷(解析版) 題型:解答題

如圖,弦AB與CD相交于⊙O內(nèi)一點E,過E作BC的平行線與AD的延長線相交于點P.已知PD=2DA=2,求PE.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第2課時練習卷(解析版) 題型:解答題

如圖,AC為圓O的直徑,弦BD⊥AC于點P,PC=2,PA=8,求tan∠ACD的值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第1課時練習卷(解析版) 題型:解答題

如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的長.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥選修4-1第1課時練習卷(解析版) 題型:解答題

如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長FB到E,使BE=FB.連結(jié)BD、EC,若BD∥EC,求△BCD和四邊形ABCD的面積.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第6課時練習卷(解析版) 題型:填空題

甲、乙二人下棋,甲獲勝的概率是0.3,甲不輸?shù)母怕蕿?.8,則甲、乙二人下成和棋的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第5課時練習卷(解析版) 題型:填空題

連續(xù)擲兩次骰子分別得到點數(shù)m、n,則向量(m,n)與向量(-1,1)的夾角θ>90°的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第3課時練習卷(解析版) 題型:填空題

某班有48名學生,在一次考試中統(tǒng)計出平均分數(shù)為70,方差為75,后來發(fā)現(xiàn)有2名同學的成績有誤,甲實得80分卻記為50分,乙實得70分卻記為100分,更正后平均分和方差分別是________.

 

查看答案和解析>>

同步練習冊答案