【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,且左、右焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,過點(diǎn)的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn).直線與橢圓的另一交點(diǎn)為,直線與直線交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試求直線的方程;
(3)如果,試求的取值范圍.
【答案】(1)(2)(3)
【解析】
(1)由題意得到關(guān)于a,b,c的方程組,求解方程組可得橢圓方程;
(2)由題意首先求得點(diǎn)D的坐標(biāo),進(jìn)一步求得點(diǎn)G的坐標(biāo),由直線垂直的充分必要條件可得直線的斜率,據(jù)此即可求得直線方程;
(3)由題意,聯(lián)立方程求得點(diǎn)H,點(diǎn)P的坐標(biāo),然后利用向量的坐標(biāo)運(yùn)算得到關(guān)于直線斜率k的表達(dá)式,最后由函數(shù)的單調(diào)性可得的取值范圍.
(1)由定義,解得:.
橢圓方程為. ①
(2)設(shè)直線, ②
則與直線的交點(diǎn).
又,所以設(shè)直線,
由解得,
則直線得斜率為,③
因?yàn)?/span>,故,又,解得,
則直線得方程為.
(3)由(2)中③知,設(shè)直線
由解得,
聯(lián)立①②,解得,
因?yàn)?/span>,所以,則,
,
因?yàn)?/span>在為減函數(shù),所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面垂直于和,是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在線段上是否存在一點(diǎn)使得與平面所成角的正弦值為若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較與的大;(只需寫出結(jié)論)
(2)估計(jì)在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率;
(3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銀川市展覽館22天中每天進(jìn)館參觀的人數(shù)如下:
180 158 170 185 189 180 184 185 140 179 192
185 190 165 182 170 190 183 175 180 185 148
計(jì)算參觀人數(shù)的中位數(shù)、眾數(shù)、平均數(shù)、標(biāo)準(zhǔn)差(保留整數(shù)部分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為,其中.
(1)求的值;
(2)若對(duì)任意的,有成立,求實(shí)數(shù)的范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,底面為正方形, 平面, ,點(diǎn)分別為的中點(diǎn).
(1)求證: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),在上是增函數(shù),且,給出下列結(jié)論,
①若且,則;
②若且,則;
③若方程在內(nèi)恰有四個(gè)不同的實(shí)根, , , ,則或8;
④函數(shù)在內(nèi)至少有5個(gè)零點(diǎn),至多有13個(gè)零點(diǎn).
其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若在點(diǎn)處的切線與軸平行,且在區(qū)間上存在最大值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),求不等式恒成立時(shí)的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com