【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對(duì)現(xiàn)有的一條穿城公路進(jìn)行分流,已知穿城公路自西向東到達(dá)城市中心后轉(zhuǎn)向方向,已知,現(xiàn)準(zhǔn)備修建一條城市高架道路,在上設(shè)一出入口,在上設(shè)一出口,假設(shè)高架道路在部分為直線段,且要求市中心與的距離為.
(1)若,求兩站點(diǎn)之間的距離;
(2)公路段上距離市中心處有一古建筑群,為保護(hù)古建筑群,設(shè)立一個(gè)以為圓心,為半徑的圓形保護(hù)區(qū).因考慮未來道路的擴(kuò)建,則如何在古建筑群和市中心之間設(shè)計(jì)出入口,才能使高架道路及其延伸段不經(jīng)過保護(hù)區(qū)?
【答案】(1);(2)設(shè)計(jì)出入口離市中心的距離在到之間時(shí),才能使高架道路及其延伸段不經(jīng)過保護(hù)區(qū).
【解析】
(1)過作直線于,則,設(shè),
則,(),可得,,可求,又,結(jié)合,可得,即可求解兩出入口之間距離的最小值.
(2)設(shè)切點(diǎn)為,以為坐標(biāo)原點(diǎn),以所在的直線為軸,建立平面直角坐標(biāo)系,設(shè)直線的方程為,可求,或(舍去),可求,此時(shí),又由(1)可知當(dāng)時(shí),,綜上即可求解.
(1)過作直線于,則,設(shè),
則,(),
故,,
,
又,
由,得,
故,當(dāng)且僅當(dāng),時(shí)取等號(hào).
此時(shí),有最小值為.
即兩出入口之間距離的最小值為.
(2)由題意可知直線是以為圓心,10為半徑的圓的切線,
根據(jù)題意,直線與圓要相離,其臨界位置為直線與圓相切,設(shè)切點(diǎn)為
此時(shí)直線為圓與圓的公切線.
因?yàn),出入?/span>在古建筑群和市中心之間,
如圖,以為坐標(biāo)原點(diǎn),以所在的直線為軸,
建立平面直角坐標(biāo)系
由,,
因?yàn)閳A的方程為,圓的方程為,
設(shè)直線的方程為,
則所以,兩式相除,得,
所以或,
所以此時(shí)或(舍去),此時(shí),
又由(1)知當(dāng)時(shí),,
綜上,.
即設(shè)計(jì)出入口離市中心的距離在到之間時(shí),才能使高架道路及其延伸段不經(jīng)過保護(hù)區(qū).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,下列說法中正確的是( )
A.100個(gè)吸煙者中至少有99人患有肺癌
B.1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌
C.在100個(gè)吸煙者中一定有患肺癌的人
D.在100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)和,若存在常數(shù),,使得函數(shù)和對(duì)其公共定義域的任何實(shí)數(shù)分別滿足和,則稱直線:為函數(shù)和的“隔離直線”,給出下列四組函數(shù):
(1),; (2),;
(3),; (4),;
其中函數(shù)和存在“隔離直線”的序號(hào)是( )
A.(1)(3)B.(1)(3)(4)C.(1)(2)(3)D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)名男生和名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
(1)用分層抽樣在選取人,再隨機(jī)抽取人,求抽取的人都是女生的概率;
(2)完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
上網(wǎng)時(shí)間少于分鐘 | 上網(wǎng)時(shí)間不少于分鐘 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,則該三角形的重心(三邊中線交點(diǎn))的坐標(biāo)為.類比這個(gè)結(jié)論,連接四面體的一個(gè)頂點(diǎn)及其對(duì)面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點(diǎn),該點(diǎn)稱為四面體的重心.若四面體的四個(gè)頂點(diǎn)的空間坐標(biāo)分別為,,,,則該四面體的重心的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點(diǎn)到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點(diǎn),設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時(shí),求直線的方程;
(2)已知直線與圓相交于, 兩點(diǎn).
(。┤,求實(shí)數(shù)的取值范圍;
(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像過點(diǎn),且在處取得極值.
(1)若對(duì)任意有恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng),試討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為F1,F2,離心率為,設(shè)過點(diǎn)F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時(shí),|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點(diǎn)P,使得當(dāng)l變化時(shí),總有PM與PN所在的直線關(guān)于x軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,點(diǎn)是線段上靠近點(diǎn)的一個(gè)三等分點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),且.如圖,將沿折起至,使得平面平面.
(1)當(dāng)時(shí),求證:;
(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com