【題目】時(shí)值金秋十月,正是秋高氣爽,陽(yáng)光明媚的美好時(shí)刻。復(fù)興中學(xué)一年一度的校運(yùn)會(huì)正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運(yùn)會(huì)出一份力。小智同學(xué)則通過(guò)對(duì)學(xué)校有關(guān)部門(mén)的走訪,隨機(jī)地統(tǒng)計(jì)了過(guò)去許多年中的五個(gè)年份的校運(yùn)會(huì)“參與”人數(shù)及相關(guān)數(shù)據(jù),并進(jìn)行分析,希望能為運(yùn)動(dòng)會(huì)組織者科學(xué)地安排提供參考。

附:①過(guò)去許多年來(lái)學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運(yùn)動(dòng)員和志愿者,其余同學(xué)均為“啦啦隊(duì)員”,不計(jì)入其中;③用數(shù)字12、34、5表示小智同學(xué)統(tǒng)計(jì)的五個(gè)年份的年份數(shù),今年的年份數(shù)是6;

統(tǒng)計(jì)表(一)

年份數(shù)x

1

2

3

4

5

“參與”人數(shù)(y千人)

1.9

2.3

2.0

2.5

2.8

統(tǒng)計(jì)表(二)

高一(3)(4)班參加羽毛球比賽的情況:

男生

女生

小計(jì)

參加(人數(shù))

26

b

50

不參加(人數(shù))

c

20

小計(jì)

44

100

1)請(qǐng)你與小智同學(xué)一起根據(jù)統(tǒng)計(jì)表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運(yùn)會(huì)的“參與”人數(shù);

2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運(yùn)會(huì)的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對(duì)今年校運(yùn)會(huì)的“參與”人數(shù)的預(yù)估是正確的,并以這6個(gè)年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率,F(xiàn)從過(guò)去許多年中隨機(jī)抽取9年來(lái)研究,記這9年中“體活躍年”的個(gè)數(shù)為隨機(jī)變量,試求隨機(jī)變量的分布列、期望和方差;

3)根據(jù)統(tǒng)計(jì)表(二),請(qǐng)問(wèn):你能否有超過(guò)60%的把握認(rèn)為“羽毛球運(yùn)動(dòng)”與“性別”有關(guān)?

參考公式和數(shù)據(jù)一:,,,

參考公式二:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

【答案】(1)線性回歸方程為:,預(yù)計(jì)今年的“參與”人數(shù)為:(千人)(2)分布列見(jiàn)解析,,.(3)沒(méi)有60%的把握認(rèn)為“羽毛球運(yùn)動(dòng)”與“性別”有關(guān)

【解析】

1)由題可得,,,,進(jìn)而寫(xiě)出線性回歸方程并預(yù)計(jì)今年的“參與”人數(shù).

2)在9次獨(dú)立重復(fù)試驗(yàn)中,事件發(fā)生的次數(shù)為次,故隨機(jī)變量服從二項(xiàng)分布,從而得出,

3)補(bǔ)充表格,計(jì)算出,進(jìn)而得出結(jié)論.

1,

,∴

所以,線性回歸方程為:

所以,預(yù)計(jì)今年的“參與”人數(shù)為:(千人)

2)分析可知:在9次獨(dú)立重復(fù)試驗(yàn)中,事件發(fā)生的次數(shù)為次,故隨機(jī)變量服從二項(xiàng)分布,所以,

3)補(bǔ)充表格

男生

女生

小計(jì)

參加(人數(shù))

26

24

50

不參加(人數(shù))

30

20

50

小計(jì)

56

44

100

由列聯(lián)表可得:

所以沒(méi)有60%的把握認(rèn)為“羽毛球運(yùn)動(dòng)”與“性別”有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,且平面,,M,N分別為的中點(diǎn).

1)記平面與底面的交線為l,試判斷直線l與平面的位置關(guān)系,并證明.

2)點(diǎn)Q在棱上,若Q到平面的距離為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高鐵站停車(chē)場(chǎng)針對(duì)小型機(jī)動(dòng)車(chē)收費(fèi)標(biāo)準(zhǔn)如下:2小時(shí)內(nèi)(含2小時(shí))每輛每次收費(fèi)5元;超過(guò)2小時(shí)不超過(guò)5小時(shí),每增加一小時(shí)收費(fèi)增加3元,不足一小時(shí)的按一小時(shí)計(jì)費(fèi);超過(guò)5小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)15元封頂。超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).為了調(diào)查該停車(chē)場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車(chē)的停留時(shí)間(假設(shè)每輛車(chē)一天內(nèi)在該停車(chē)場(chǎng)僅停車(chē)一次),得到下面的頻數(shù)分布表:

T(小時(shí))

頻數(shù)(車(chē)次)

600

120

80

100

100

以車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的概率。

1X表示某輛車(chē)在該停車(chē)場(chǎng)停車(chē)一次所交費(fèi)用,求X的概率分布列及期望;

2)現(xiàn)隨機(jī)抽取該停車(chē)場(chǎng)內(nèi)停放的3輛車(chē),表示3輛車(chē)中停車(chē)費(fèi)用少于的車(chē)輛數(shù),求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面,,.

(1)當(dāng)變化時(shí),點(diǎn)到平面的距離是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;

(2)當(dāng)直線與平面所成的角為45°時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形中,,,,沿對(duì)角線折起,使點(diǎn)在平面內(nèi)的射影恰在.

(Ⅰ)求證:;

(Ⅱ)求異面直線所成的角;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

1)求的值;

2)求上的最大值和最小值;

3)不畫(huà)圖,說(shuō)明函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線的方程為.

1)設(shè)是經(jīng)過(guò)點(diǎn)的直線,且和有且僅有一個(gè)公共點(diǎn),求的方程;

2)設(shè)的一條漸近線,上相異的兩點(diǎn).若點(diǎn)上的一點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn)記為,關(guān)于點(diǎn)的對(duì)稱點(diǎn)記為.試判斷點(diǎn)是否可能在上,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知,,,用反證法證明: 中至少有一個(gè)不小于;

2)用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的函數(shù)的圖象關(guān)于軸對(duì)稱,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案