已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>-4x的解集為(1,3),若f(x)的最大值大于-3,求a的取值范圍.
分析:不等式f(x)>-4x的解集為(1,3),得方程f(x)=-4x兩個(gè)根是1,3.由此可得出二次函數(shù)f(x)中的系數(shù)間的關(guān)系,又f(x)的最大值大于-3,得二次項(xiàng)系數(shù)a<0且可以得到關(guān)于a的不等關(guān)系.
解答:解:設(shè)f(x)=ax2+bx+c,(a<0),由題意得方程f(x)=-4x兩個(gè)根是1,3,
即ax2+(b+4)x+c=0兩個(gè)根是1,3.
-
b+4
a
=4
c
a
=3

∴b=-4a-4,c=3a
又f(x)的最大值大于-3,即
4ac-b2
4a
>-3

消去b,c得到關(guān)于a不等式,
a2+5a+4>0
解得a的取值范圍是-1<a<0或a<-4.
點(diǎn)評(píng):本題考查不等式與方程之間的內(nèi)在聯(lián)系,體現(xiàn)了函數(shù)與方程的數(shù)學(xué)思想,解題的過(guò)程中,要有主元素的思想,即要把條件轉(zhuǎn)化成關(guān)于a的不等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案