已知曲線f(x)=
1
2
x2-3
上一點(diǎn)P(1,-
5
2
)
,則過點(diǎn)P的切線的斜率為( 。
A、1B、-1C、2D、-2
分析:先根據(jù)題意求出函數(shù)的導(dǎo)數(shù),再結(jié)合導(dǎo)數(shù)的幾何意義(即在某點(diǎn)的切線斜率)進(jìn)而得到答案.
解答:解:根據(jù)題意可得:曲線方程為f(x)=
1
2
x2-3

所以f′(x)=x,
所以在點(diǎn)P(1,-
5
2
)
處得切線的斜率為:k=1,
故選A.
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握函數(shù)的求導(dǎo)公式,以及導(dǎo)數(shù)的幾何意義即利用導(dǎo)數(shù)球曲線某點(diǎn)的切線方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)二模)已知函數(shù)f(x)=(1-
ax
)ex(x>0)
,其中e為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在(1,f(1))處的切線與坐標(biāo)軸圍成的面積;
(Ⅱ)若函數(shù)f(x)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),且極大值與極小值的積為e5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=
13
x3-ax+4
在x=1處的切線方程是y=-3x+b.
(1)求實(shí)數(shù)a和b的值;
(2)若函數(shù)y=f(x)-m在區(qū)間(0,+∞)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請考生注意:重點(diǎn)高中學(xué)生做(2)(3).一般高中學(xué)生只做(1)(2).
已知函數(shù)f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)當(dāng)a=
3
4
時(shí),設(shè)g(x)=x2-bx+1,若對任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex(x>0)
,其中e為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)a=2時(shí),求曲線(2
2
π
4
)
在(1,l:x=1)處的切線與坐標(biāo)軸圍成的面積;
(Ⅱ)若函數(shù)ρ=
22+22
=2
2
存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),且極大值與極小值的積為e5,求a的值.

查看答案和解析>>

同步練習(xí)冊答案