【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若λμ,則λμ的最大值為(  )

A. 3 B. 2

C. D. 2

【答案】A

【解析】建立如圖所示的直角坐標系,則C點坐標為(2,1).

設(shè)BD與圓C切于點E,連接CE,則CEBD.

CD=1,BC=2,

BD,

EC

即圓C的半徑為,

P點的軌跡方程為(x2)2(y1)2.

設(shè)P(x0,y0),則 (θ為參數(shù))

(x0,y0), (0,1) (2,0)

λμλ(0,1)μ(2,0)(2μ,λ),

μx01cos θλy01sin θ.

兩式相加,得λμ1sin θ1cos θ2sin(θφ)≤3

當且僅當θ2kπφkZ,λμ取得最大值3.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過長期觀測得到:在交通繁忙的時段,某公路段的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間的函數(shù)關(guān)系為:.

1)在該時段內(nèi),當汽車的平均速度為多少時,車流量最大?最大車流量為多少?

2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系請建立關(guān)于的回歸方程(系數(shù)精確到);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量, ,則每位員工每日獎勵100元; ,則每位員工每日獎勵150元; 則每位員工每日獎勵200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約多少元.(當月獎勵金額總數(shù)精確到百分位)

參考數(shù)據(jù) ,其中 分別為第個月的促銷費用和產(chǎn)品銷量, .

參考公式

1)對于一組數(shù)據(jù), , ,其回歸方程的斜率和截距的最小二乘估計分別為, .

2)若隨機變量服從正態(tài)分布,, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圖所示的五面體中,面ABCD為直角梯形,,平面平面ABCD,,,是邊長為2的正三角形.

證明:平面ACF;

若點P在線段EF上,且二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)).

(1)當k≤0時,求函數(shù)f (x)的單調(diào)區(qū)間;

(2)若函數(shù)f (x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且 ,平面平面,

)求證: 平面

)若二面角為直二面角,

i)求直線與平面所成角的大。

ii)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓C和點,,若在圓C上存在點P,使得,則半徑r的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中文函數(shù)function)一詞,最早由近代數(shù)學(xué)家李善蘭翻譯的之所以這么翻譯,他給出的原因是凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù),也即函數(shù)指一個量隨著另一個量的變化而變化下列選項中兩個函數(shù)相等的是(   。

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案