【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

【答案】A

【解析】

設(shè)內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)H,根據(jù)切線長定理和雙曲線的定義,把|PF1||PF2|2,轉(zhuǎn)化為|HF1||HF2|2,從而求得點(diǎn)H的橫坐標(biāo).

如圖所示:F1(﹣,0)、F20),設(shè)內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)H,PF1PF2與內(nèi)切圓的切點(diǎn)分別為M、N,由雙曲線的定義可得|PF1||PF2|2a2,由圓的切線長定理知,|PM||PN|, ,,故|MF1||NF2|2,即|HF1||HF2|2,設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,即點(diǎn)H的橫坐標(biāo)為x,故 x+)﹣(x)=2,∴x

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對六個(gè)年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.

(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,為短軸的一個(gè)端點(diǎn)且(其中為坐標(biāo)原點(diǎn)).

1)求橢圓的方程;

2)若、 分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),單調(diào)遞增,,若對任意,存在,使得成立,則稱上的“追逐函數(shù)”.若,則下列四個(gè)命題:①上的“追逐函數(shù)”;②若上的“追逐函數(shù)”,則;③上的“追逐函數(shù)”;④當(dāng)時(shí),存在,使得上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購買量單位:進(jìn)行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費(fèi)者月餅購買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費(fèi)者的人均月餅購買量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在六面體中,平面平面,平面,,且.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,,,平面,.

1)若的中點(diǎn),的中點(diǎn),求證:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A在圓外部且與圓相切,同時(shí)還在圓內(nèi)部與圓相切.

1)求動(dòng)圓圓心的軌跡方程;

2)記(1)中求出的軌跡為,軸的兩個(gè)交點(diǎn)分別為、,上異于的動(dòng)點(diǎn),又直線軸交于點(diǎn),直線分別交直線、兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年1月1日,濟(jì)南軌道交通號線試運(yùn)行,濟(jì)南軌道交通集團(tuán)面向廣大市民開展“參觀體驗(yàn),征求意見”活動(dòng),市民可以通過濟(jì)南地鐵APP搶票,小陳搶到了三張?bào)w驗(yàn)票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗(yàn)活動(dòng),則小王被選中的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案