直線數(shù)學(xué)公式與曲線y2=x只有一個(gè)公共點(diǎn),則k=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:當(dāng)斜率k=0 時(shí),直線y=k(x+2)+平行于x軸,與拋物線y2=x僅有一個(gè)公共點(diǎn),當(dāng)斜率不等于0時(shí),把y=k(x+2)+ 代入拋物線的方程化簡(jiǎn),由判別式△=0求得實(shí)數(shù)k的值.
解答:當(dāng)斜率k=0 時(shí),直線y=k(x+2)+平行于x軸,與拋物線y2=x僅有一個(gè)公共點(diǎn).
當(dāng)斜率不等于0時(shí),把y=k(x+2)+代入拋物線y2=x整理得ky2-y+2k+=0.
由題意可得,此方程有唯一解,
故判別式△=1-4k(2k+)=0
∴k=-或k=
綜上得:k=0,-
故選B.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,一元二次方程有唯一解的條件,體現(xiàn)了分類討論的數(shù)學(xué)思想.本題的易錯(cuò)點(diǎn)在于忘記討論k=0的情況,從而得到錯(cuò)誤結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)A(x1,y1)在圓(x-2)2+y2=4上運(yùn)動(dòng),點(diǎn)A不與(0,0)重合,點(diǎn)B(4,y0)在直線x=4上運(yùn)動(dòng),動(dòng)點(diǎn)M(x,y)滿足
OM
OB
,
OM
=
AB
.動(dòng)點(diǎn)M的軌跡C的方程為F(x,y)=0.
(1)試用點(diǎn)M的坐標(biāo)x,y表示y0,x1,y1;
(2)求動(dòng)點(diǎn)M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個(gè)方面的性質(zhì),請(qǐng)你選擇其中的三個(gè)方面進(jìn)行研究,并說(shuō)明理由.(若你研究的方面多于三個(gè),我們將只對(duì)試卷解答中的前三項(xiàng)予以評(píng)分)
①對(duì)稱性;
②頂點(diǎn)坐標(biāo)(定義:曲線與其對(duì)稱軸的交點(diǎn)稱為該曲線的頂點(diǎn));
③圖形范圍;
④漸近線;
⑤對(duì)方程F(x,y)=0,當(dāng)y≥0時(shí),函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)考生注意:重點(diǎn)高中學(xué)生只做(1)、(2)兩問(wèn),一般高中學(xué)生只做(1)、(3)兩問(wèn).
已知P是圓F1:(x+1)2+y2=16上任意一點(diǎn),點(diǎn)F2的坐標(biāo)為(1,0),直線m分別與線段F1P、F2P交于M、N兩點(diǎn),且
MN
=
1
2
(
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|

(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P、Q兩點(diǎn),若
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)).試求直線l在y軸上截距的取值范圍;
(3)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩點(diǎn),使得
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)),若存在求出直線l的方程,否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過(guò)定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計(jì)算過(guò)程,并求出結(jié)果,若同時(shí)選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無(wú)效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類似的問(wèn)題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類似的問(wèn)題的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

請(qǐng)考生注意:重點(diǎn)高中學(xué)生只做(1)、(2)兩問(wèn),一般高中學(xué)生只做(1)、(3)兩問(wèn).
已知P是圓F1:(x+1)2+y2=16上任意一點(diǎn),點(diǎn)F2的坐標(biāo)為(1,0),直線m分別與線段F1P、F2P交于M、N兩點(diǎn),且
MN
=
1
2
(
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|

(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P、Q兩點(diǎn),若
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)).試求直線l在y軸上截距的取值范圍;
(3)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩點(diǎn),使得
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)),若存在求出直線l的方程,否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省月考題 題型:解答題

已知點(diǎn)M(k,l)、P(m,n),(klmn≠0)是曲線C上的兩點(diǎn),點(diǎn)M、N關(guān)于x軸對(duì)稱,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0),
(Ⅰ)用k、l、m、n分別表示xE和xF;
(Ⅱ)某同學(xué)發(fā)現(xiàn),當(dāng)曲線C的方程為:x2+y2=R2(R>0)時(shí),xE·xF=R2是一個(gè)定值與點(diǎn)M、N、P的位置無(wú)關(guān);請(qǐng)你試探究當(dāng)曲線C的方程為:時(shí),xE·xF的值是否也與點(diǎn)M、N、P的位置無(wú)關(guān);
(Ⅲ)類比(Ⅱ)的探究過(guò)程,當(dāng)曲線C的方程為y2=2px(p>0)時(shí),探究xE與xF經(jīng)加、減、乘、除的某一種運(yùn)算后為定值的一個(gè)正確結(jié)論。(只要求寫出你的探究結(jié)論,無(wú)須證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案