【題目】已知圓,直線被圓所截得的弦的中點為P5,3).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

【答案】12

【解析】

I)根據(jù)圓心CP與半徑垂直,可求出直線l1的斜率,進而得到點斜式方程,再化成一般式即可.

II)根據(jù)直線與圓的位置關(guān)系,圓心到直線的距離小于半徑得到關(guān)于b的不等式,從而解出b的取值范圍.

1)由,得,

圓心,半徑為3.…………………2

由垂徑定理知直線直線,

直線的斜率,故直線的斜率,……………5

直線的方程為,即.…………………7

2)解法1:由題意知方程組有兩組解,由方程組消去

,該方程應(yīng)有兩個不同的解,…………………9

,化簡得,………………10

解得

的解為.…………………………13

b的取值范圍是.…………………………14

解法2:同(1)有圓心,半徑為3.…………………9

由題意知,圓心到直線的距離小于圓的半徑,即

,即,………………………11

解得,………………………13

b的取值范圍是.…………………14

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn滿足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數(shù)列{an}的通項公式;
(2)求bn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+cosx(a∈R),x∈[﹣ ].
(1)若函數(shù)f(x)是偶函數(shù),試求a的值;
(2)當a>0時,求證:函數(shù)f(x)在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當a= 時,判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , a4+a7=20,對任意的k∈N都有Sk+1=3Sk+k2
(I) 求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項公式及{(﹣1)m1bm}的前2m項和T2m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點的個數(shù);
(2)當a=0時,關(guān)于x的方程f(x)=m(m∈R)有2個不同的實數(shù)根x1 , x2 , 證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數(shù)學科提供5種不同層次的課程,分別稱為數(shù)學1、數(shù)學2、數(shù)學3、數(shù)學4、數(shù)學5,每個學生只能從這5種數(shù)學課程中選擇一種學習,該校高二年級1800名學生的數(shù)學選課人數(shù)統(tǒng)計如表:

課程

數(shù)學1

數(shù)學2

數(shù)學3

數(shù)學4

數(shù)學5

合計

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學成績與學生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數(shù)學2的人數(shù)為X,選擇數(shù)學1的人數(shù)為Y,設(shè)隨機變量ξ=X﹣Y,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中這些球除漢字外無其他差別,每次摸球前先攪拌均勻隨機摸出一球,不放回;再隨機摸出一球,兩次摸出的球上的漢字組成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案