設(shè)∈(0,),方程表示焦點在x軸上的橢圓,則的取值范圍是(  )
A.(0,B.(,)C.(0,)D.[,)
B
依題意可得,。因為,所以,故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓. 稱圓心在原點,半徑為的圓是橢圓的“準圓”. 若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中心點在原點,準線方程為,離心率為的橢圓方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓C:為橢圓C的兩焦點,P為橢圓C上一點,連接
延長交橢圓于另外一點Q,則⊿的周長_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓:兩個焦點之間的距離為2,且其離心率為.
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 若為橢圓的右焦點,經(jīng)過橢圓的上頂點B的直線與橢圓另一個交點為A,且滿足,求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,橢圓的中心在坐標原點,其中一個焦點為圓的圓心,右頂點是圓F與x軸的一個交點.已知橢圓與直線相交于A、B兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)求面積的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)上的兩點,
滿足,橢圓的離心率短軸長為2,0為坐標原點.
(1)求橢圓的方程;
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在軸上的橢圓的離心率為,則的值是___________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2, 2),且
(I )求橢圓E的方程;
(II)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

查看答案和解析>>

同步練習冊答案