考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由于a
1=1,a
2=
,an+2=an+1-an(n=1,2,3,…).變形為a
n+2-a
n+1=
(an+1-an),a
2-a
1=
.即
bn+1=bn,
b1=.利用等比數(shù)列的通項(xiàng)公式可得b
n,因此a
n+1-a
n=
()n.再利用“累加求和”a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1即可得出a
n.
(2)利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
解:(1)∵a
1=1,a
2=
,an+2=an+1-an(n=1,2,3,…).
∴a
n+2-a
n+1=
(an+1-an),a
2-a
1=
.
∴
bn+1=bn,
b1=.
∴數(shù)列{b
n}是等比數(shù)列,
∴
bn=()n.
∴a
n+1-a
n=
()n.
∴a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1=
()n-1+
()n-2+…+
+1
=
=
3-.
∴
bn=()n,an=3-.
(2)數(shù)列{a
n+b
n}的前n項(xiàng)和為S
n=
+3n-2×
=
2-2×()n+3n-
6(1-()n)=3n-4+
.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“累加求和”,考查了推理能力與計(jì)算能力,屬于難題.