精英家教網(wǎng)如圖:已知橢圓A,B,C是長(zhǎng)軸長(zhǎng)為4的橢圓上三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使
PQ
AB
?請(qǐng)給出證明.
分析:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程,根據(jù)長(zhǎng)軸求得a,點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn)可求得A的坐標(biāo).根據(jù)
AC
BC
=0 , |
BC
|=2|
AC
|
判斷△AOC是等腰直角三角形,進(jìn)而求得C的坐標(biāo)代入橢圓的方程求得b,最后可得橢圓的方程.
(Ⅱ)設(shè)直線PC的方程與橢圓方程聯(lián)立,消元后根據(jù)△>0判斷k的范圍.設(shè)點(diǎn)P(x1,y1)由韋達(dá)定理可求得x1和y1關(guān)于k的表達(dá)式,直線CP、CQ與x軸圍成底邊在x軸上的等腰三角形推斷直線CP、CQ的斜率互為相反數(shù),進(jìn)而得到k的范圍,同樣的設(shè)點(diǎn)Q(x2,y2),根據(jù)韋達(dá)定理求得x2和y2關(guān)于k的表達(dá)式,根據(jù)橢圓是中心對(duì)稱圖形求得點(diǎn)B的坐標(biāo),根據(jù)
PQ
AB
關(guān)系得證.
解答:精英家教網(wǎng)解:(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)

∵橢圓的長(zhǎng)軸長(zhǎng)為4,
∴a=2,
∵點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn),
∴A(2,0),
AC
BC
=0,|
BC
|=2|
AC
|

∴△AOC是等腰直角三角形,從而C(1,1),
代入橢圓方程得
1
4
+
1
b2
=1?b2=
4
3
,
∴橢圓方程為
x2
4
+
3y2
4
=1


(Ⅱ)設(shè)直線lPC:y=kx+1-k(k≠0)
與橢圓方程
x2
4
+
3y2
4
=1
聯(lián)立得到(3k2+1)x2+6k(1-k)x+3(1-k)2-4=0
則△=[6k(1-k)]2-4(3k2+1)[3(k-1)2-4]=4(3k+1)2>0從而k≠-
1
3
且k≠0
設(shè)點(diǎn)P(x1,y1),而C(1,1),由韋達(dá)定理知1+x1=
6k(k-1)
3k2+1
?x1=
3k2-6k-1
3k2+1

代回lPC:y=kx+1-k得到y1=
-3k2-2k+1
3k2+1

∵直線CP、CQ與x軸圍成底邊在x軸上的等腰三角形
∴直線CP、CQ的斜率互為相反數(shù),即k≠-
1
3
, k≠
1
3
且k≠0
故設(shè)點(diǎn)Q(x2,y2),同理可知x2=
3k2+6k-1
3k2+1
y2=
-3k2+2k+1
3k2+1

所以
PQ
=(
12k
3k2+1
,
4k
3k2+1
)

∵橢圓是中心對(duì)稱圖形
∴B(-1,-1),
AB
=(-3,-1)

PQ
=-
4k
3k2+1
AB
,即總存在實(shí)數(shù)λ使
PQ
AB
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程和平面向量的知識(shí).能考查學(xué)生綜合運(yùn)用所學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省孝感高中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:已知橢圓A,B,C是長(zhǎng)軸長(zhǎng)為4的橢圓上三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓的中心O,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年四川省攀枝花市高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:已知橢圓A,B,C是長(zhǎng)軸長(zhǎng)為4的橢圓上三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓的中心O,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)名校高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

如圖:已知橢圓A,B,C是長(zhǎng)軸長(zhǎng)為4的橢圓上三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓的中心O,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省武漢市武昌區(qū)高三五月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:已知橢圓A,B,C是長(zhǎng)軸長(zhǎng)為4的橢圓上三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓的中心O,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使?請(qǐng)給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案