要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=cos(x-
π
3
)+2的圖象沿向量
a
平移得到,則
a
為( 。
A、(-
π
6
,2)
B、(
π
6
,-2)
C、(-
π
6
,-2)
D、(
π
6
,2)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=cos(x-
π
3
)+2=sin(x+
π
6
)+2的圖象向右平移
π
6
個(gè)單位,可得函數(shù)y=sinx+2的圖象,
再把所得圖象向下平移2個(gè)單位,可得函數(shù)y=sinx的圖象.
a
=(
π
6
,-2 ),
故選:B.
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱(chēng),是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于平面α和兩直線m、n,下列表述正確的是(  )
A、m?α,n?α,則m,n相交
B、若m∥α,m∥n,則n∥α
C、若m?α,n∥α,則m∥n
D、若m∥α,則m平行于α內(nèi)的無(wú)數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(2+i)3的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在復(fù)平面內(nèi)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(
1
2
x
1
4
},B={x|log2(x-1)<2},則A∩B等于( 。
A、(-∞,5)
B、(-∞,2)
C、(1,2)
D、(2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列各命題:
①若α,β是第一象限角,且α>β,則cosα<cosβ;
②函數(shù)y=2sin(2x-
π
6
)的圖象的一個(gè)對(duì)稱(chēng)中心是(
π
12
,0);
③若函數(shù)f(x)=sin(
x+5π
2
),g(x)=cos(
x+5π
2
),則f(x)是偶函數(shù),g(x)是奇函數(shù);
④若函數(shù)y=sin2x的圖象向左平移
π
4
個(gè)單位,得到函數(shù)y=sin(2x+
π
4
)的圖象.
其中正確的命題為( 。
A、①②③B、②③
C、③④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若5S1=S2+S3,且S4=10.求數(shù)列{an}的通項(xiàng)公式以及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)m為何值時(shí),f(x)=x2+2mx+3m+4.有且僅有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面內(nèi)的向量
OA
=(1,7),
OB
=(5,1),
OM
=(2,1),P是直線OM上的一個(gè)動(dòng)點(diǎn),且
PA
PB
=-8.求:
(Ⅰ)向量
OP
的坐標(biāo);
(Ⅱ)向量
PA
PB
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
2
x2
)n
的展開(kāi)式中第5項(xiàng)的系數(shù)與第3項(xiàng)系數(shù)之比為56:3,
(1)求展開(kāi)式中的常數(shù)項(xiàng).
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案