下面有五個(gè)命題:
①扇形的中心角為
3
,弧長為2π,則其面積為3π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z};
③已知角α 的終邊經(jīng)過點(diǎn)P(-5,12),則sinα+2cosα的值為
2
13
;
④函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù);
⑤已知ω>0,函數(shù)f(x)=sin(ωx+
π
4
)在(
π
2
,π)上單調(diào)遞減,則ω的取值范圍是[
1
2
5
4
].
其中真命題的序號是______.
①由弧長公式l=aR可得:α=
L
R
=(弧度),從而R=
L
α
=
3
=3.
由扇形的面積公式可得:S=
1
2
LR=
1
2
×2π×3=3π,故①正確.
②當(dāng)k=2n(n為偶數(shù))時(shí),a=
2nπ
2
=nπ,表示的是終邊在x軸上的角,故②不正確;
③:∵x=-5,y=12,r=|OP|=13,∴sinα+2cosα=
12
13
+2×
-5
13
=
2
13
.故③正確;
④∵函數(shù)y=sin(x-
π
2
)=-cosx,又函數(shù)y=cosx在區(qū)間(0,π)上單調(diào)遞減,
∴函數(shù)y=sin(x-
π
2
)=-cosx在區(qū)間(0,π)是單調(diào)遞增,故④不正確.
⑤ω(π-
π
2
)≤π?ω≤2,(ωx+
π
4
)∈[
π
2
ω+
π
4
,πω+
π
4
]?[
π
2
,
2
]
得:
π
2
ω+
π
4
π
2
,πω+
π
4
2
?
1
2
≤ω≤
5
4
.正確.
故答案為:①③⑤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①扇形的中心角為
3
,弧長為2π,則其面積為3π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z};
③已知角α 的終邊經(jīng)過點(diǎn)P(-5,12),則sinα+2cosα的值為
2
13
;
④函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù);
⑤已知ω>0,函數(shù)f(x)=sin(ωx+
π
4
)在(
π
2
,π)上單調(diào)遞減,則ω的取值范圍是[
1
2
,
5
4
].
其中真命題的序號是
①③⑤
①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①終邊在y軸上的角的集合是{β|β=2kπ+
π
2
,k∈Z
}.
②設(shè)一扇形的弧長為4cm,面積為4cm2,則這個(gè)扇形的圓心角的弧度數(shù)是2.
③函數(shù)y=sin4x-cos4x的最小正周期是2π.
④為了得到y(tǒng)=3sin2x的圖象,只需把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6

⑤函數(shù)y=tan(-x-π)在[-π,-
π
2
)上
是增函數(shù).
所有正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

下面有五個(gè)命題:
①扇形的中心角為數(shù)學(xué)公式,弧長為2π,則其面積為3π;
②終邊在y軸上的角的集合是{a|a=數(shù)學(xué)公式,k∈Z};
③已知角α 的終邊經(jīng)過點(diǎn)P(-5,12),則sinα+2cosα的值為數(shù)學(xué)公式;
④函數(shù)y=sin(x-數(shù)學(xué)公式)在(0,π)上是減函數(shù);
⑤已知ω>0,函數(shù)f(x)=sin(ωx+數(shù)學(xué)公式)在(數(shù)學(xué)公式,π)上單調(diào)遞減,則ω的取值范圍是[數(shù)學(xué)公式,數(shù)學(xué)公式].
其中真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山三中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

下面有五個(gè)命題:
①扇形的中心角為,弧長為2π,則其面積為3π;
②終邊在y軸上的角的集合是{a|a=,k∈Z};
③已知角α 的終邊經(jīng)過點(diǎn)P(-5,12),則sinα+2cosα的值為;
④函數(shù)y=sin(x-)在(0,π)上是減函數(shù);
⑤已知ω>0,函數(shù)f(x)=sin(ωx+)在(,π)上單調(diào)遞減,則ω的取值范圍是[].
其中真命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案