設(shè)、是方程的兩個(gè)根,

  m的值.

 

答案:
解析:

  :由條件知,

  ...

  ,..

  由,及,易求出.

 


提示:

  分析:可利用韋達(dá)定理,消去得到關(guān)于m的一元二次方程,方程求出m的值,進(jìn)而求出的值.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)函數(shù),且,.求證:(Ⅰ);(Ⅱ)方程在區(qū)間內(nèi)至少有一個(gè)根;(Ⅲ)設(shè),是方程的兩個(gè)根,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三習(xí)題精編(3) 題型:選擇題

設(shè)是方程的兩個(gè)根,則的關(guān)系是(   )

A.           B.          

C.           D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省武勝縣高三第一次模擬考試數(shù)學(xué)理卷 題型:選擇題

已知函數(shù)的導(dǎo)函數(shù)為,,且,設(shè)、是方程的兩個(gè)根,則的取值范圍為(    )

   A.      B.    C.      D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省泉州市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案