【題目】已知數(shù)列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).記Sn=a1+a2+…+an . Tn= + +…+ .求證:當(dāng)n∈N*
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.

【答案】
(1)證明:因?yàn)閍n+12+an+1﹣1=an2,(1)所以an2+an﹣1=an12,(2)

,

所以an+1﹣an與an﹣an1同號,即與a2﹣a1一致.

因?yàn)? ,且a2﹣a1>0,

∴an+1﹣an>0,

,

即an+1<1

綜上所述:0≤an<an+1<1對任何n∈N*都成立.


(2)證明:由 ,k=1,2,…,n﹣1(n≥2),

因?yàn)閍1=0,所以

∵an<1,

所以Sn>n﹣2.


(3)證明:由 ,得

所以

于是 ,

故當(dāng)n≥3時,

又因?yàn)門1<T2<T3,

所以Tn<3.


【解析】(1)先證明an+1﹣an>0,再證明an+1<1.(2)由ak+12+ak+1﹣1=ak2 , 對k取1,2,…,n﹣1時的式子相加得Sn , 最后對Sn進(jìn)行放縮即可證得.(3)利用放縮法由 ,得 ,即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識,掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】證明:△ABC是等邊三角形的充要條件是a2+b2+c2=ab+bc+ac(其中a,b,c△ABC的三條邊).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三年級期中考試的學(xué)生中隨機(jī)統(tǒng)計(jì)了40名學(xué)生的政治成績,40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,據(jù)此繪制了如圖所示的樣本頻率分布直方圖.

(1)求成績在[80,90的學(xué)生人數(shù);

(2)從成績大于等于80分的學(xué)生中隨機(jī)選2名學(xué)生,求至少有1 名學(xué)生成績在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將號碼分別為1、2、…、9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球.其號碼為a,放回后,乙從此袋中再摸出一個球,其號碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;

②用相關(guān)指數(shù)R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;

③比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.

④在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時,若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數(shù)變化.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1an=2an+1﹣1(n∈N*),令bn=an﹣1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求證:c1+c2+…+cn<n+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)討論的單調(diào)區(qū)間和極值;

(2)將函數(shù)的圖象向下平移1個單位后得到的圖象,且為自然對數(shù)的底數(shù))和是函數(shù)的兩個不同的零點(diǎn),求的值并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a>0,b>0,函數(shù)f(x)=|x﹣a|﹣|x+b|的最大值為3.
(I) 求a+b的值;
(Ⅱ)設(shè)函數(shù)g(x)=﹣x2﹣ax﹣b,若對于x≥a均有g(shù)(x)<f(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案