設(shè)橢圓的焦點分別F1(-1,0)、F2(1,0),右準(zhǔn)線L交x軸于點A,且

(1)試求橢圓的方程:

(2)過F1、F2分別互相垂直的兩直線與橢圓分別交與D、E、M、N四點(如圖所示),試求四邊形DMEN的面積的最大值和最小值.

答案:
解析:

  (1)    4分

  (2)設(shè)DE的傾斜角為,則MN的傾斜角為,由對稱性,不妨設(shè)

  又,通徑,則  8分

  得: 令  

    12分

  (2)又解:設(shè)MN方程為則DE方程為

  由

    8分

  得  進而可得  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年新疆烏魯木齊市高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓的焦點分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點A,且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平二中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓的焦點分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點A,且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省泉州市安溪八中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

設(shè)橢圓的焦點分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點A,且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省重點中學(xué)聯(lián)盟高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓的焦點分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點A,且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案