已知函數(shù)f1(x)=
2x-1
x+1
.對于n=1,2,…定義fn+1(x)=f1(fn(x)),若f35(x)=f5(x),f28(x)=
 
考點(diǎn):數(shù)列遞推式,數(shù)列的函數(shù)特性
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:由f35(x)=f5(x)可猜想其具有周期性,再由f1(x)=
2x-1
x+1
,且fn+1(x)=f1(fn(x)),推出f2(x),f3(x),f4(x),f5(x),f6(x),f7(x)從而找到規(guī)律,從而求解.
解答: 解:∵f1(x)=
2x-1
x+1
,且fn+1(x)=f1(fn(x)),
∴f2(x)=
2
2x-1
x+1
-1
2x-1
x+1
+1
=
x-1
x
;
∴f3(x)=f1(f2(x))=
2
x-1
x
-1
x-1
x
+1
=
x-2
2x-1
,
∴f4(x)=f1(f3(x))=
2
x-2
2x-1
-1
x-2
2x-1
+1
=
-1
x-1
,
∴f5(x)=f1(f4(x))=
-x-1
x-2

∴f6(x)=f1(f5(x))=x,
∴f7(x)=
2x-1
x+1
=f1(x),
∴從f1(x)到f6(x)每6個(gè)一循環(huán),
又∵28=4×6+4,
∴f28(x)=f4(x)=
-1
x-1

故答案為:
-1
x-1
點(diǎn)評:本題考查了數(shù)列的函數(shù)特性與數(shù)列的遞推式應(yīng)用,先猜想,后通過嘗試得到周期性,從而求解,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-x
+log2
(x+1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA⊥底面ABC,點(diǎn)B為以AC為直徑的圓上任意一動(dòng)點(diǎn),且SA=AB,點(diǎn)M是SB的中點(diǎn),AN⊥SC且交SC于點(diǎn)N.
(I)求證:SC⊥面AMN
(Ⅱ)當(dāng)AB=BC時(shí),求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

地球赤道的半徑為6370km,所以赤道上1°的弧長是
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“若a<0,則a≤1”是
 
(填“真”或“假”)命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長軸上有一頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為:3+2
2
,3-2
2

(1)求橢圓的方程;
(2)若點(diǎn)P橢圓上第一象限,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點(diǎn),若滿足
PF1
PF2
=0,求點(diǎn)P到橢圓右準(zhǔn)線的距離;
(3)過點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
,
RN
NQ
,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+(a-2)x+2a-1=0在(0,1)內(nèi)有且只有一個(gè)根,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,且tanα=-
5
12
,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)M(4,2),且離心率為
2
2
,R(x0,y0)是橢圓Γ上的任意一點(diǎn),從原點(diǎn)O引圓R:(x-x02+(y-y02=8的兩條切線分別交橢圓于P,Q.
(1)求橢圓Γ的方程;
(2)求證:OP2+OQ2為定值.

查看答案和解析>>

同步練習(xí)冊答案