已知:如圖,四棱錐S-ABCD底面為平行四邊形,E、F分別為邊AD、SB中點(diǎn),
(1)求證:EF∥平面SDC.
(2)AB=SC=1,EF=
3
2
,求EF與SC所成角的大。
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:(1)取BC中點(diǎn)G,連接FG、EG,由已知條件得FG∥平面SDC,EG∥平面SDC,從而平面EGF∥平面SDC,由此能證明EF∥平面SDC.
(2)由FG∥SC,知∠EFG是EF與SC所成角(或所成角的補(bǔ)角),由此能求出EF與SC所成角的大。
解答: 解:(1)取BC中點(diǎn)G,連接FG、EG,
則FG∥SC,EG∥DC,
∵FG∥SC,F(xiàn)G不包含于平面SDC,SC?平面SDC,
∴FG∥平面SDC,同理,EG∥平面SDC,
又FG∩EG=G,
∴平面EGF∥平面SDC,
又EF?平面EGF,∴EF∥平面SDC.
(2)∵FG∥SC,∴∠EFG是EF與SC所成角(或所成角的補(bǔ)角),
∵AB=SC=1,EF=
3
2
,∴EG=AB=1,F(xiàn)G=
1
2
SC
=
1
2
,
∴EF2+FG2=EG2,
∴∠EFG=90°,
∴EF與SC所成角的大小為90°.
點(diǎn)評:本題考查直線與平面平行的證明,考查兩條異面直線所成角的大小的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人拋擲一枚硬幣,出現(xiàn)正面、反面的概率均為
1
2
.構(gòu)造數(shù)列{an},使得an=
1當(dāng)?shù)趎次出現(xiàn)正面時(shí)
-1當(dāng)?shù)趎次出現(xiàn)反面時(shí)
,記Sn=a1+a2+a3+…+an(n∈N*).
(1)求S4=2的概率.
(2)若前兩次均出現(xiàn)正面,求2≤S6≤6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,BC=2AB,PA⊥底面ABCD.
(1)證明:PB⊥AC
(2)若PA=AB,求直線PD與平面PBC所成的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算f(x)=2x4+3x3+5x+4在x=2時(shí)的值.寫出詳細(xì)步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司在一次年會(huì)上舉行了有獎(jiǎng)問答活動(dòng),會(huì)議組織者準(zhǔn)備了10道題目,其中6道選擇題,4道填空題,公司一職員從中任取3道題解答.
(1)求該職員至少取到1道填空題的概率;
(2)已知所取的3道題中有2道選擇題,道填空題.設(shè)該職員答對選擇題的概率都是
4
5
,答對每道填空題的概率都是
3
5
,且各題答對與否相互獨(dú)立.用X表示該職員答對題的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列直角坐標(biāo)方程和極坐標(biāo)方程互化
(1)y2=4x;   
(2)y2+x2-2x-1=0;
(3)2ρcosθ-ρsinθ=4;    
(4)ρ=
1
2-cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC是等邊三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、DB在平面ABC的同側(cè),M為EA的中點(diǎn),CE=2BD.
(Ⅰ)求證:MD∥面ABC;
(Ⅱ)求證:平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)參加政治、歷史、生物、地理四門學(xué)科的學(xué)業(yè)水平測試,假設(shè)該同學(xué)歷史學(xué)科測試成績?yōu)锳的概率為
4
5
,其余三門學(xué)科測試成績?yōu)锳的概率均為
1
2
,且四門學(xué)科測試成績是否為A相互獨(dú)立.
(1)求該同學(xué)恰有兩門學(xué)科測試成績?yōu)锳的概率;
(2)設(shè)四門學(xué)科中測試成績?yōu)锳的門數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:xy=1,現(xiàn)將曲線C繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,求所得曲線C′的方程.

查看答案和解析>>

同步練習(xí)冊答案