精英家教網 > 高中數學 > 題目詳情
如圖,是橢圓上的一點,是橢圓的左焦點,且,則點到該橢圓左準線的距離為____________。
由題意知左焦點和左準線,設,則可求得,則左焦點到左準線的距離是。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知點B為橢圓+=1的左準線與軸的交點,若線段AB的中點C在橢圓上,則該橢圓的離心率為       
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓C,經過橢圓C的右焦點F且斜率為kk≠0)的直線l交橢圓G于A、B兩點,M為線段AB的中點,設O為橢圓的中心,射線OM交橢圓于N點.

(1)是否存在k,使對任意m>0,總有成立?若存在,求出所有k的值;
(2)若,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,
)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓上一點到直線與到點(-2,0)的距離之比為          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求符合下列條件的橢圓標準方程:
(1)焦距為8,離心率為0.8 ;
(2)焦點與長軸較接近的端點的距離為,焦點與短軸兩端點的連線互相垂直。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直角坐標系中,O為坐標原點,設直線經過點,且與軸交于
點F(2,0)。
(I)求直線的方程;
(II)如果一個橢圓經過點P,且以點F為它的一個焦點,求橢圓的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,B(– c,0),C(c,0),AH⊥BC,垂足為H,且
(1)若= 0,求以B、C為焦點并且經過點A的橢圓的離心率;
(2)D分有向線段的比為,A、D同在以B、C為焦點的橢圓上,當 ―5≤ 時,求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題15分)如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.(1)求橢圓的標準方程;(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案