在平面直角坐標(biāo)系中,已知,.

(1)求以點(diǎn)為圓心,且經(jīng)過(guò)點(diǎn)的圓的標(biāo)準(zhǔn)方程;

(2)若直線: 與(1)中圓交于,兩點(diǎn),且 ,求的值.

 

【答案】

(1)

(2) 

【解析】

試題分析:解:(1)方法1:因?yàn)閳A的圓心為,可設(shè)圓的標(biāo)準(zhǔn)方程為

因?yàn)辄c(diǎn)在圓上,所以,即

所以圓的標(biāo)準(zhǔn)方程為.                                       5分

方法2:因?yàn)辄c(diǎn)在圓上,所以圓的半徑為

因?yàn)閳A的圓心為,所以圓的標(biāo)準(zhǔn)方程為.             5分

(2)設(shè)圓心到直線的距離為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013101123450062967776/SYS201310112345411476833212_DA.files/image012.png">兩點(diǎn)在圓上,所以

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013101123450062967776/SYS201310112345411476833212_DA.files/image016.png">,

所以                             10分

考點(diǎn):圓的方程以及直線與圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系,以及點(diǎn)到直線的距離公式的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案